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Non-volatile metal oxide 
reactive structures

• Challenges imposed by 

performance goals

– Continuous operation on-sun

– Heat recuperation

– Direct solar absorption

– Chemical and mechanical 

durability

• Complex behavior

– Surface/bulk reaction

– Solid phase transport

– Effects of dopants and 

supports
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Experimental approach

• Material properties

– BET surface area

– SEM-EDX, TEM-EELS, XRD

• Surface analysis

– Surface Raman, XPS

• Kinetic measurements

– Stagnation flow reactor

• 500 W CW NIR laser heating

• Modulated beam mass spectrometer
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Evaluating oxidation and 
reduction behavior

• Screen for O2 uptake and 
release
– System viability

• Resolve thermal reduction 
behavior
– Variable heating rates

• Resolve gas splitting 
behavior
– Variable T, P, [OX]

• Analysis
– Rate limiting mechanisms

– Kinetic models

– Material stability

– Cycle performance
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Numerical approach to 
evaluating kinetic behavior

• Solid state kinetic theory
– Concept applied to any measure of 

reaction extent (α)

– Use 14 validated expressions for f(α)

• Numerical procedure
– Mathematica™ based

• Stiff integrators

• Global least squares optimization

– Account for dispersion and detector lag

– Resolve two competing, rate limiting 
mechanisms
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Material systems currently 
under investigation

• Redox cycle chemistries
– Chemical systems

• M+n/M+(n+1) redox couples

• MOn-δ non-stoichiometric oxides

• CU “hercynite”

– Supports
• m-ZrO2, YSZ, CeO2, Al2O3
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CeO2 thermal reduction kinetics 
likely NOT limiting CSP chemistry

• Fiber diameter ∼ 10 µm.

• Solid 1000 µm thick.

• Solid-state dynamics at these 
length scales and heating rates do 
not limit reduction kinetics.
– Thermal conduction, vacancy 

diffusion, surface chemistry

mass (mg) mole O (×10-6) δ

960 220 0.0197

207 48 0.0199
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Results for best fit to CO2

splitting on fiber

• Fibers oxidize faster than solids and 
achieve higher conversion

– Surface area effects

• Fast initial “order-based” process 
followed by a slower “diffusion-
based” process

– Diffusion limitation more prevalent 
for lower surface area solids
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O2 redox behavior for transition-
metal doped CeO2 powders

• Thermal reduction followed by O2 oxidation
– Kinetic model can be developed to describe reduction behavior

• O2 evolution complex for Mn and Fe doped CeO2

– Possible phase segregation

– More O2 evolved per unit mass of material
• Multiple valence states for Mn and Fe cations likely
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• O2 evolution post-H2O oxidation reveals that active sites in 
system re-oxidize at different rates

• Fe and Mn-doped ceria not likely a viable strategy despite 
greater redox capacity

– Slow kinetics on “low energy” O-site

– Severe problems with sintering/reactivity with ceramics

Before W.O.
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H2O redox behavior for transition-
metal doped CeO2 powders
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Very interesting O2 redox chemistry from 
thin film CoFeAl-spinels

• Oxygen uptake and release 

remarkably facile

– Chemistry requires rearranging 

multiple cations

FeAl2O4CoAl2O4

Co+2,Co+3

CoAl2O4

CoFe2O4 + Al2O3 ↔ (Co+2,Co+3)AlxOy + FeAl2O4 + O2
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Summary

• Solid-state kinetic models show promise for 

describing complex redox behavior

– Multiple active centers, competing mechanisms

• Cerium oxide

– Facile reduction kinetics

– Complex redox chemistry evident when doped with 

various transitional metals (especially Fe and Mn)

• “Hercynite” oxide

– Facile oxygen uptake and release observed for this 

unique thin-film system
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