A High-Fidelity Molecular Dynamics Appivad
for Studying Dislocations in Cd,  Zn_Te Crystals

ASME 2013 International Mechanical Engineering Congress
& Exposition

San Diego, California, USA

X. W. Zhou, D. K. Ward, B. M. Wong, F. P. Doty, and J. A. Zimmerman
Sandia National Laboratories, USA

This work is supported by the DOE/NNSA Office of Nonproliferation Research and

Development, Proliferation Detection Program, Advanced Materials Portfolio. Sandia
National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S.
Department of Energy's National Nuclear Security Administration under contract DE-

AC04-94A1L85000.
IR @ Sandia
: E National
Nz Laboratories

LOCKHEED MABTIN%



Radiation Detection Cd,_ Zn _Te Problem

1. Improvement of the leading radiation detection semiconductor
Cd,_ Zn, Te (CZT) has been slow for the past 15+ years;

2. Properties are limited by dislocation cell structures!, which
might be controllable by point defects?;

3. Dislocation dynamics (DD) simulations can guide experiments;

4. Atomistic simulations are needed to provide inputs for DD;

5. We have developed a high-fidelity CdZnTe bond order potential
to enable molecular dynamics simulations of dislocations in

CZT.
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Analytical Bond Order Potential (BOP)
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BOP Origin
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Many-body Quantum Theory Bond-Order Potentials %

Derived from quantum mechanics theory through systematic coarse-graining;

2. Separate treatment of ¢ and © bonding energies (products of bond order” and bond

integral®);

The first two levels of the expanded Green function retained for the o and © bond

orders;

4. Up to four electron hops are considered, naturally incorporating the 3-member ring
term in the ¢ bonding (R,,) and the dihedral angle (A¢,,-) effect in the p bonding;

5. Valence effect 1s addressed.

Accuracy comparable to quantum mechanics and scale comparable to conventional

molecular dynamics.
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* bond order: half the difference of electrons in the bond and anti-boding states.
# bond integral: hopping probability of electrons from one orbital to another.



Growth Simulation Enabling Potentials

Our Cd-Zn-Te BOP meets two criteria:

1. Captures property trends of many phases as determined from
quantum calculations;
2. Predicts correctly crystalline growth during MD simulations.

Note that:

1. Growth simulations test unlimited number of configurations;
2. Most previous methods do not consider growth simulations
—> rare to satisfy both criteria.



Growth Simulations Extremely Challenging

*  Wrong configurations should and will nucleate due to random condensation
of adatoms, but they must all evolve to the correct crystal structure;
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 Capturing property trends of a large number of clusters, lattices, and defects

are necessary, but this alone will not ensure successful growth simulations.

 [Extensive iterations are usually needed to develop an growth-enabling
interatomic potential.
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Literature Examples of Growth
Simulations

InAs on (110) GaAs'.
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None of the potentials listed below
predicts the crystalline growth.
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BOP-Based Molecular Dynamics (MD)
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Cohesive energy (eV/atom)

BOP Verification

Captures property trends of many phases including clusters, lattices, surfaces, defects, etc.
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BOP Validation Example

accurately predict CdTe/CdS defects
(a) Mismatch dislocations (b) Twin (c¢) Stacking fault
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HRTEM from Y. Yan, R. G. Dhere, K. M. Jones, and M. M. Al-Jassim, J. Appl. Phys. 89, 5844 (2001).



Complexity of Dislocations

(@) front view
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There are 30+ different dislocations (combinations of shuftle, glide,
a, 3, edge, screw, mixed, partial, perfect) in binary CdZn alone.



Dislocation Line Energies

(¢) shuffle dislocations

(a) glide partial dislocations
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Dislocation Loop Model

(a) creation of dislocation loop (b) evolution of dislocation loop
& : free; top B and ® : moved by 0.5 b;
bottom B and & : moved by -0.5 b;

Perfect Burgers vector is through
two partials: 0.5b=0.5 (b; + b,)

shear strain 7y controlled by displacing
top and bottom (dark) layers in the
+b directions
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(a) the upper black and blue regions are moved by positive half
Burgers vector, and the lower black and orange regions by
negative half Burgers vectors;

(b) dislocation motion 1s simulated by continuously moving the top
and bottom black regions in positive and negative Burgers vector
directions.



Partial Dislocation Motion

(b) same as (a) except that Cd and Te atoms are switched

(@) partial dislocation loop with Burgers vector [112]a/6
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o partial dislocations have a higher mobility than (3 partial dislocations.



Pertect Dislocation Motion & Validation

(@) MD simulation of temperature (900 K) and strain rate (Y, = 0.338 ns-!) accelerated motion of [110]a/2 dislocations
initial shear strain to create the dislocation: y,, o = 0.068
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Simulations predict that o perfect dislocations have a higher mobility
than 3 perfect dislocations, in agreement with semiconductor

compound TEM experiments.



Perfect Dislocation Loop Dynamics




Edge Dislocation Dynamics Model

(a) pre-MD simulation (b) cut in half (both periodic)
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-~ 2 (dark) atoms give the
Perfect Burgers vector is through . (esired shear stress

two partials: 0.5 b=10.5 (b; + by) LR

«— fin -x direction

(a) the blue and orange regions are moved by positive and negative
half Burgers vectors;

(b) the system is cut into two pieces containing o and 3 dislocations
respectively;

(c) dislocation motion 1s simulated by applying force to the top and
bottom black regions.



Edge Dislocation Dynamics




Edge Dislocation Dynamics Curves

(a) effect of temperature at a given stress
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(b) effect of stress at a given temperature
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Steady-state dislocation dynamics is achieved in all of our simulations.



In(v) [In(A/ps)]

Verification from Arrhenius Equation

2. We found activation
energies of 0.14 eV
and 0.27 eV and

, | 1 | activation volumes of

10 20 30 40 50 60 17 A3 and 36 A3

inverse of Boltzmann temperature term k-1'T-1 (eV-1) ) ’
respectively for o and

Q-1 'Qj B glide edge

kT dislocations.

O : o dislocation
- ® : [} dislocation

01 _ Txy;o,scpa | 1. Dislocation velocities
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Conclusions

. BOP approaches DFT fidelity required for growth simulations;
. BOP reproduces the experimental observation that o

dislocations move much faster than 3 dislocations;

. Core energies of 30+ dislocations have been derived for CdTe.
. A robust method has been developed to calculate activation

energy Q and activation volume €2 for dislocation motion. We
found Q =0.14 and 0.27 eV, and Q = 17 and 36 A3 respectively
for a and P edge types of glide dislocations;

. Our method now enables large scale DD simulations of

dislocation cell structures in CZT.



