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Khan et al., IJP, 22 (2006).
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e Mechanical properties of nanocrystalline (NC) o
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compared to larger grained polycrystalline 0 g @ﬁim :

materials (e.g. yield strength, fracture/fatigue
resistance, and superplasticity).
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e Higher number density of atoms are located i;-‘f R
in GB regions, need a deeper understanding of
GB role in deformation processes, both elastic
and inelastic.
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Important to understand role of GBs
and related deformation mechanisms in
nanoscale plasticity

Van Swygenhoven et al., Acta Mat., (2006).
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» Interface structures are in agreement with published HRTEM data, e.g.
Al (Mills et al. (1992) and Medlin et al. (1993)) E Structural Unit
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« General (high-angle) interface structure
» Structural unit model (SUM) (Sutton and Vitek, 1983)

- » High-angle grain boundaries are composed of combinations of
structural units from ‘favored’ orientations
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Spearot, Tschopp, Jacob, McDowell, Acta Materialia, 55 (2007) 705.
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Dislocation nucleation stresses are
best correlated with the Schmid factor
or normal factor in different regions of

the stereographic triangle.
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GB Dislocation Nucle
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« 2D periodic boundary conditions
(parallel to GB plane)

* ‘Constrained’ free vertical faces

» Constant applied velocity
deformation

~ + 109 s' constant shear strain rate
* NVT at 10 K

i : S
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« Grain boundary sliding and significant
atomic shuffling occurs in all boundaries

» Behavior is nearly elastic-perfectly plastic

* Reordering and restructuring processes

during hardening stage of NEGBs "
X / e 8
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v" Non-Schmid effects
v' Tension-compression asymmetry
v' Competing/combined effects of
* GB reordering,shuffling/sliding, and/or migration

» dislocation nucleation/absorption

> Sensitive to GB network

» Affected by excess free volume — NEGB structures

**Deformation mechanisms are also thermally activated, which poses challenges for
-~ direct MD simulation of multiple mechanisms with different activation enthalpies. @
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GB Sliding/Atomic Shuffling |

Dislocation Nucleation
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Continuum Atomistic Continuum Atomistic
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Y (@PXy - FaXPX5r) =0

B=1
where n ~
Wiy = Z.’B?ﬂXﬁf and Niv = Z X?ﬁXJ(\)[/Iﬂ
B=1 B=1
Sandia I
——— | F3 = 0wy, (ﬂa)X/III Deformation Gradient Laboratories
* Zimmerman et al., 1JSS (2009) See also Gullett et al. MSMSE (2008),

Hartley and Mishin (2005)

-E:BQ where R=R ‘|‘E

sym skew
1 1
— R = (R—R") — | o= —z€iju(Rskew)i
skew 2 2
microrotation vector
L=D+W
1 1
— W= 5@ —L") — |wl= _Efijsz’j
T —— L— vorticity vector "

* Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., MSMSE 18(1) 2010, 015002.
*Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., submitted to Int. J. Englneermg Science
in memgﬂ’am to C)Erlngen July 2010 ‘\ , - - - 12
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Metal plasticity at the nanoscale is complex
> Various deformation mechanisms

> Use of centrosymmetry, slip vector, etc. is complicated in terms of
characterization and visualization of high density of evolving line defects

Informing continuum models

> Kinematics of continuum description can perhaps be bridged in terms
of understanding based on statistical fields from atomistic simulations

> Check assumptions, trends from proposed continuum constitutive
models (e.g., Khan et al. (2006), Capolungo et al. (2007), Wei and Anand
(2004) and Wei et al.(2006))

Some connections

> microrotation (¢) and its gradient [Atomistics]
~ > micro- strain and torsion-flexure tensors [Continuum]
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* Formulate continuum metrics for use in atomistic simulation
analysis

% Investigate the evolution of metrics for various deformation
mechanisms

4

D)

* Resolve nanocrystalline copper deformation using continuum
metrics

L)

/

%* Dislocation Nucleation

*  GB Sliding/Atomic Shuftling

Microrotation
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Slip Vector Energy Microrotation
1.4974 -3.2790 0.083619
1.2395 - -3.3326 0.063488
0.9815 -3.3863 0.043358
0.7236 -3.4399 0.023227
0.4657 -3.4935 0.003097
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Can distinguish between deformation mechanisms
(e.g. GB migration)

Microrotation Microrotation

0.180000 0.097686
0.135000 0.073264
0.090000 0.048843
0.045000 0.02442]
0.000000 0.000000
B Migration - X3 B Mi ion-X129
0.12 G gratio 0,06 GB Migration
Increasing Strain
0.10 v = 0.11 0.05 - Y12 = 0.035
12— Y
§ 008 N Average § 004
; 72=010 /erage g
o 008 microrotation g oo3
o . o
S 0.04 over slices || & oo
= Increasing Strain to bou ndar =
0.02 - y 0.01 1
000 : 0.00 ol
0 5 10 15 20 0 5 10 15 20
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Tucker. G.J.. Zimmerman. Jd and McDowell. D.L.. MSMSE 18(1) 2010. 015602. : i N. \p
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W FCC Y
B GBand TJ |

« 3D periodic simulation domain

» Orthogonal Box with edges oriented
along X,Y,Z axis

> Voronoi 'tessellation to partition
domain into grains

» 25 grains

* Average Grain size=5-15nm

» Lattice orientations chosen randomly
for each grain

"Voro++., http://math.lbl.gov/voro++/

17
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<d,>=5nm <d,>=10nm <d,>=15nm

e Full 3D nanocrystalline structure (Voronoi Tessellation, random lattice orientations)
e 3D periodic BCs
e Atom overlap deletion and equilibration for 50 ps

 Uniaxial tension at 10K under NPT, const strain rate 10° s'!

e Analysis of deformation mechanisms using microscale continuum metrics

18
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e 5nm
v 10nm
= 15nm

0.02 0.04 0.06 0.08 0.10
Strain

F22 R22 Microrotation Dilatation
1.70 1.00 0.3500 1.25

1.53 0,95 0.2625 094
1.35 0.90 0.1750 0.63
1.17 0.85 0.0875 0,31
1.00 0.80 0.00

0.0000

Deformation Gradient Rotation Metric Microrotation Dilatation
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. . Microrotation
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Phase averaged dilatation Dilatation
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Dislocation Nucleation/
Emission

Grain Boundary Sliding
(w/ atomic shuffling)

= Microrotation

0.2554
0.1916
0.1277
0.0639
0.0000
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Microrotation Vortici ty
0.2950 R
0.2212 0.2899
0.1475 0.2306
0.0737 0.1713
0.0000 15t Nearest 0.1119

0.0526
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= . . .

T Extending non-locality of metrics
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Partial dislocation
hucleation from GB/

Grain 16 TJ
CNA Microrotation
5 0.255436
4 0.191589
3 0.127742
2 0.063895
1 0.000049

) Microrotation

B St(mlz Y U 0.2554
(;-..4" g ' 0.1916

0.28 3 0.1277

0.14 0.0639

0.00 ) 0.0000
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FCC Atoms HCP Atoms GB Atoms
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6% Tensile Strain

Slice parallel to slip
plane in grain 20

-

* Microrotation is able to capture important ' .
deformation behavior (e.g. dislocation slip) Slip Vector
and structural features (e.g. stacking fault) - 1.8

usually visualized using CNA and atomic slip
vectortogether.

' Microrotation

- 0.16

-
loos

* Potential to be passed into continuum level

models as kinematic variable.

-

4 Atomic Planes | 2 Atomic F’Ianes|

27
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) 1 5nm 15 nm
Green Strain Tensor E= E(FT F -1) FCC Atoms

« E,, from all atom in a phase (e.g. FCC, GB,
Dislocation) added together.

« Overall, GBs account for a higher fraction of
tensile strain in smaller grain structures. In
contrast, dislocation activity accounts for a Dislocation Atoms E
higher fraction in larger grain structures. &% 22

o
™

o
»

o
N

GB Atoms

Fraction of Total Calculated
Green Strain (E22)
=
N

28
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e Different mechanisms provide distinct kinematic signatures and a sense of
deformation history is captured by certain metrics.

e The non-locality of various mechanisms can be probed by employing the
volume-averaging scheme using atomic neighbor lists (15, 279, 3@, and
reference/current).

e Insight into complex deformation landscape in NC materials is provided
through the implementation of microscale continuum metrics, and we can
begin to resolve mechanism contributions to overall deformation.

e Deformation avalanches are of interest (inversion points and plateaus), also
from point of view of distribution of shedding of microkinetic energy.

% Investigate tension/compression asymmetry and stress-state dependent behaviors

% Quantify the distribution of dislocation slip vs. GB processes during deformation as a
function of grain size.

29
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