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Introduc0on    

•  Mechanical proper:es of nanocrystalline (NC) 
materials show poten:al improvement 
compared to larger grained polycrystalline 
materials (e.g. yield strength, fracture/fa:gue 
resistance, and superplas:city). 

 
•  Higher number density of atoms are located 
in GB regions, need a deeper understanding of 
GB role in deforma:on processes, both elas:c 
and inelas:c. 

 

Important to understand role of GBs 
and related deforma0on mechanisms in  

nanoscale plas0city 

Van Swygenhoven et al., Acta Mat., (2006). 

Khan et al., IJP, 22 (2006). 
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Atomis0c Studies: Preface to NC Materials 

•  Interface structures are in agreement with published HRTEM data, e.g. 
Al (Mills et al. (1992) and Medlin et al. (1993)) 

Σ9 (221) 141.1o
Σ3 (112) 70.5o
 Σ11 (113) 50.5o


E Structural Unit 

•  General (high-angle) interface structure 
  Structural unit model (SUM) (Sutton and Vitek, 1983) 
  High-angle grain boundaries are composed of combinations of 

structural units from ‘favored’ orientations 
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Homogeneous and heterogeneous nuclea0on 
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Dislocation nucleation stresses are 
best correlated with the Schmid factor 
or normal factor in different regions of 

the stereographic triangle.  

Correlation 

Tschopp, Spearot, McDowell, MSMSE, 15 (2007) 693. 
Tschopp, Spearot, McDowell, Nabarro Tribute, Ed. J.P. Hirth, 
Elsevier, 2008, 43. 

( ) ( )( )max max1BC SC
cDσ ξ σ= −

Boundary heterogeneous nucleation  

Spearot, Tschopp, Jacob, McDowell, Acta Materialia, 55 (2007) 705. 



  The George W. Woodruff School of Mechanical Engineering                               School of Materials Science and Engineering 

5 

Disloca0on Nuclea0on in Cu:  
Tension‐Compression Asymmetry 

Tschopp, McDowell, JMPS, 56 (2008) 1806.  
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boundary structures 
 
(Tschopp, Tucker, 
McDowell, Acta Mater. 
2008) 
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Non‐eqilibrium GB structures 

γGB = 833 mJ/m2 

γGB = 890 mJ/m2 

γGB = 919 mJ/m2 

FVGB = 6.22e-04  

FVGB = 6.28e-04  

FVGB = 7.94e-04  

EGB 

NEGB* 

NEGB** 

EGB NEGB* NEGB** 
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σmax = 4.38 GPa σmax = 4.28 GPa σmax = 3.94 GPa 

GB Dislocation Nucleation (Tension) 

EGB NEGB* NEGB** 

Highly connected FV region is 
source for dislocation emission 
through atomic relaxation 

Higher FV regions aid in atomic 
shuffling and dislocation 
nucleation 

GB Deforma0on‐Tension 
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Shear Results 

•  2D periodic boundary conditions 
(parallel to GB plane) 

•  ‘Constrained’ free vertical faces 

•  Constant applied velocity 
deformation 

•  109 s-1 constant shear strain rate 

•  NVT at 10 K 

•  Grain boundary sliding and significant 
atomic shuffling occurs in all boundaries 

•  Behavior is nearly elastic-perfectly plastic 

•  Reordering and restructuring processes 
during hardening stage of NEGBs 
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Some Implica0ons for NC Metal Plas0city 

   Non‐Schmid effects 
   Tension‐compression asymmetry 
   Compe:ng/combined effects of  

•  GB reordering,shuffling/sliding, and/or migra:on 
•   disloca:on nuclea:on/absorp:on 

 
  Sensi:ve to GB network 
 Affected by excess free volume – NEGB structures 

**Deforma0on mechanisms are also thermally ac0vated, which poses challenges for 
direct MD simula0on of mul0ple mechanisms with different ac0va0on enthalpies. 
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NC Inelas0c Deforma0on Mechanisms 

Froseth et al., Acta Materialia 52, 2004. 

Disloca0on Nuclea0on 

GB/TJ Migra0on 

Van Swygenhoven and Derlet., PRB 64, 2001. 

GB Sliding/Atomic Shuffling 

Van Swygenhoven, Materials Today 9, 2006. 
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Kinema0cs 

e1 

e2 

Ωo
 Ω


x X 

Continuum Continuum Atomistic Atomistic 

dx dX  dX  dx 

Deforma0on Gradient 

Reference  Current 
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where 
and 

Atomis0c Formula0on 

where ●   

●   
microrota0on vector 

vor0city vector 

* Zimmerman et al., IJSS (2009) 

Deforma0on Gradient 

•  Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., MSMSE 18(1) 2010, 015002. 
• Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., submitted to Int. J. Engineering Science 
in memoriam to C. Eringen, July 2010. 

See also Gullett et al. MSMSE (2008),  
Hartley and Mishin (2005) 
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Why Con0nuum Metrics? 

Metal plas:city at the nanoscale is complex 
  Various deforma:on mechanisms  
   Use of centrosymmetry, slip vector, etc. is complicated in terms of 
characteriza:on and visualiza:on of high density of evolving line defects 

 
Informing con:nuum models 

   Kinema:cs of con:nuum descrip:on can perhaps be bridged in terms 
of understanding based on sta:s:cal fields from atomis:c simula:ons  

  Check assump:ons, trends from proposed con:nuum cons:tu:ve 
models (e.g., Khan et al. (2006), Capolungo et al. (2007), Wei and Anand  
(2004) and Wei et al.(2006)) 

➢  microrota:on (φ) and its gradient [Atomis:cs] 
➢  micro‐ strain and torsion‐flexure tensors   [Con:nuum] 

Some connec:ons 
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Objec0ves 

  Formulate con:nuum metrics for use in atomis:c simula:on 
analysis 

  Inves:gate the evolu:on of metrics for various deforma:on 
mechanisms 

  Resolve nanocrystalline copper deforma:on using con:nuum 
metrics 

  Disloca:on Nuclea:on 

  GB Sliding/Atomic Shuffling 
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3D Disloca0on Nuclea0on 
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3D GB Migra0on 

Can distinguish between deformation mechanisms 
(e.g. GB migration) 

Average 
microrotation 
over slices || 
to boundary 

Tucker, G.J., Zimmerman, J.A., and McDowell, D.L., MSMSE 18(1) 2010, 015002. 
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3D NC simula0ons 

•  3D periodic simulation domain 
  Orthogonal Box with edges oriented 

along X,Y,Z axis 
  Voronoi 1 tessellation to partition 

domain into grains 
  25 grains 

 

•  Average Grain size= 5 - 15 nm 
  Lattice orientations chosen randomly 

for each grain 
 

  

3
LHWg
n

=

1 Voro++., http://math.lbl.gov/voro++/ 
 



  The George W. Woodruff School of Mechanical Engineering                               School of Materials Science and Engineering 

18 

Nanocrystalline Copper 

<dgr> = 5nm  <dgr> = 10nm  <dgr> = 15nm 

•  Full 3D nanocrystalline structure (Voronoi Tessella:on, random lafce orienta:ons) 

•  3D periodic BCs 
•  Atom overlap dele:on and equilibra:on for 50 ps 

•  Uniaxial tension at 10K under NPT, const strain rate 109 s‐1 

•  Analysis of deforma:on mechanisms using microscale con:nuum metrics 

FCC  Other 
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Nanocrystalline Copper 
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Nanocrystalline Copper 
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Nanocrystalline Copper 
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Microrota0on – Vector Field 

Disloca0on Nuclea0on/
Emission 

Grain Boundary Sliding 
(w/ atomic shuffling) 
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Effects of Averaging Nonlocality 

Extending non‐locality of metrics 
‘filters’ the kinema:cs  

1st Nearest 
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Nanocrystalline Copper 

Grain 16 

Par:al disloca:on 
nuclea:on from GB/

TJ 
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Disloca0on/GB Deforma0on 

15nm 5nm 

15nm 5nm 

Plateau of Partial Dislocations in 15nm structure 

•  Lower concentration and lower energy GBs in 15nm NC 
configuration than in the 5nm structure at 0% tensile strain 

•  GB deformation is dominant and begins at lower strains – 
5nm 

•  Continuous GB accommodation with dislocation slip – 15nm 

Limited Full Dislocations in 5nm structure 

GB 
Atoms 
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Microrota0on Distribu0on 
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Advantage of Microrota0on 
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Green Strain 
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Conclusions/Future Work 

•  Different mechanisms provide dis:nct kinema:c signatures and a sense of 
deforma:on history is captured by certain metrics. 

• The non‐locality of various mechanisms can be probed by employing the 
volume‐averaging scheme using atomic neighbor lists (1st, 2nd, 3rd, and 
reference/current).  

•  Insight into complex deforma:on landscape in NC materials is provided 
through the implementa:on of microscale con:nuum metrics, and we can 
begin to resolve mechanism contribu:ons to overall deforma:on.   

•   Deforma:on avalanches are of interest (inversion points and plateaus), also 
from point of view of distribu:on of shedding of microkine:c energy. 

   Investigate tension/compression asymmetry and stress-state dependent behaviors 

   Quantify the distribution of dislocation slip vs. GB processes during deformation as a 
function of grain size. 



  The George W. Woodruff School of Mechanical Engineering                               School of Materials Science and Engineering 

30 

Acknowledgements 

•  NSF CMMI #0758265 ‐ Mul:resolu:on, Coarse‐
Grained Modeling of 3D Disloca:on Nuclea:on and 
Migra:on (metrics) 
•  NSF DMI #1030103 ‐ Methods for Atomis:c Input 
into Ini:al Yield and Plas:c Flow Criteria for 
Nanocrystalline Materials (nanocrystals) 
•  Dr. Jonathan Zimmerman (Sandia Na4onal Labs) 
•  Sandia Na:onal Laboratories (EPSRI Internship – 
Summer 2008) 
•  Carter N. Paden Jr. Dis:nguished Chair in Metals 
Processing  
•  NSF TeraGrid Science Gateways program. 
 
Sandia National Laboratories is a multi-program laboratory managed and operated by 
Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the 
U.S. Department of Energy's National Nuclear Security Administration under contract 
DE-AC04-94AL85000. 


