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Overview

* Nanoparticles for increased catalytic activity in the Oxygen Reduction Reaction
— High surface area
—  Reduce amount of Pt loading on the surface
—  AuPd core shell to deposit a Pt ML on the surface

—  Pd hollow nanoparticles for larger surface area Pt ML

e In Situ liquid S/TEM to image the deposition and galvanic displacement processes
—  STEM/EELS to measure the thickness of the aqueous solution in the liquid cell
—  Electron beam damage causing the formation of aqueous electrons in solution
— Understanding the interaction of the aqueous electrons with colloidal nanoparticles in the liquid cell

— Minimize the formation of radiation species in STEM using reduced beam current and magnification

¢ Understanding the morphological and compositional changes during pit formation
— TEM vs. STEM imaging of pit process at low electron doses

—  Comparison of in situ particles to ex situ reaction under similar reaction times
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High Activity Catalysts for Oxygen Reduction Reaction
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Pd-Pt Nanodendrites

High Surface Area: Hollow Pt Nanocages
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Galvanic Displacement
B B Y,
. Oxidation: Ag -> e" + Ag* : Reduction: Pd?* + 2e- -> Pd

Clay et al., Materials Letters 2012, 88, 143-147. Pd cage Pd cage with Pt ML

Develop hollow Pd nanostructres with Pt ML surfaces for high activity catalysts



Titan Environmental TEM

FEI Titan 80-300 kV C,-corrected ETEM
— Operated at 300 kV
—  STEM resolution: 1.4 A
—  Probe current: 0.37 nA

Gatan Tridiem EEL Spectrometer
—  Energy resolution: 1.6 eV

Hummingbird Scientific Liquid Holder
—  Microfluidic pumping

SiN Membrane Windows from Norcada

Window Area: 50 x 50 um

SiN thickness: 30 nm

Spacers: 90 nm polystyrene beads dried at the corners

2.6 mm !

2.6 mm

STEM/EELS allows for liquid thickness measurements during imaging



Water Thickness Measurement 1n the Liquid Cell
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STEM/EELS provides estimated fluid thickness and evidence of damage to water




Electron Beam Ionization of Water

STEM Probe
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TEM Electron Exposure

H,0 — 2.7 e, +2.7 H* + 0.61 H + 0.43H, + 2.870H + 0.61 H,0, + 0.026HO,

* values represent # species formed for 100 eV absorbed energy
= Main reducing specie: e,; formed at 4 x 10° s

* Majority of primary species quickly react before diffusion occurs

STEM Electron Exposure
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Electron probe generates reducing species in water during imaging



Pd Shell Structure Comparison by Au Template Size

Ex Situ Au-Pd Growth
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10 uM PdCI, Aqueous 10 nm
84s 16.8

15 nm Au

30 nm Au

10 uM Pd(l, solution
Fluid thickness: 40 nm K. Jungjohann et al. Nano Lett. 2013, 13, 2964.

Pd shell morphology varies strongly by gold template size (surface structure)



Mobility of Aqueous Electrons in Liquid Cell

Aqueous Electron Dynamics Control the Growth Rate
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e, dynamics determine the growth rate of particles in solution



Low Dose Imaging to Reduce Beam Effects

Demonstrated with SrTiO,

Fast Scan: 450 e/A2 Lower Beam Current: 220 ¢ /A2
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1 x 108 e/A2 450 e/A2 220 e/A2
Beam Current (pA) 50 50 2
Pixel Dwell Time (us) 20 0.5 2
Pixel Size (A2) 0.05 0.3 0.11

Limit the electron dose to 1image non-beam induced processes



Ex Situ Hollow AgPd Formation at Room Tem

5 x 10° Ag particles/uL % 2:3 S
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2.5 x 10° Ag particles/uL
25 uM PdCl,

~81% Ag &19 % Pd ~ 35 nm Diameter

Hollow structures formed after 2 hours of exposure to PdCl,



Hollow AgPd Alloy Nanoparticles

TEM: 50 uM PdCl, (5.2 e/A2) STEM: 10 uM PdCl, (40.9 e/A2)
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Video played at 3x real-time Video played at 3x real-time

Acquired at 3 frames/second Acquired at 1 frame/second

Slow process of pit formation, followed by rapid dissolution of Ag core



Hollow AgPd Alloy Nanoparticles

TEM: 50 uM PdCl, (5.2 e/A2)
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Low dose TEM observes process with higher frame rate than STEM



Hollow AgPd Alloy Nanoparticles

STEM: 10 uM Pd(:l2 (409 ¢ /A2)

Low dose STEM provides high contrast and controlled exposure area



Hollow AgPd Alloy Nanoparticles

50 uM PdCl, In Situ DF STEM Video

Video played at 3x real-time

Acquired at 1 frame/ seconds

Ex Situ TEM
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Particle ~ 70 nm

Cage composed of many small
nanoparticles

Ag metal dissolves in solution,
is reduced by the electron
beam along with free Pd ions
in solution during imaging

Out of focus particles
deposited on the bottom SiN
membrane

Some nanoparticles were
already hollow when began
imaging in region

Hollowing of Ag from the nanoparticle core occurred within seconds



Hollow AgPd Alloy Nanoparticles

Analysis after /n Situ STEM: 25 uM PdCl, Composition of /n Situ Particles

Pd

99 % Ag 5nm 97 % Ag

Extent of Ag replacement depends on
the shape of the Ag core

EXx situ structure and composition matches in situ hollow structures



Conclusions

e In situ liquid STEM/EELS allows for real-time imaging and simultaneous
collection of thickness measurements from nanomaterial reactions

* Minimize electron beam induced processes by lowering the beam current
for imaging, less beam effects observed in STEM vs. TEM

* The structure, size and composition of the hollow AgPd nanoparticles
was comparable for the in situ TEM and ex situ reactions

e Future analysis of the kinetics related to hollowing of the interior Ag,
control structure using Br ions to mask some Ag surfaces

e The Center for Functional Nanomaterials (CFN at BNL) and the Center
for Integrated Nanotechnologies (CINT at SNL & LANL) provide access
to scientific staff and facilities at no fee to approved users via a peer-
review process for research
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