

Fault Oblivious HPC with Dynamic Task Replication and Substitution

ISC '11, June 20, 2011

Yevgeniy Vorobeychik, Jackson Mayo, Rob Armstrong, Ron Minnich, Don Rudish
Sandia National Labs

Outline

- Example (motivating) application domain
- The DAS Architecture
- Trading off replication and substitution
- The Grid World application
- Simulation results

Motivating Application: Distributed Value Iteration

Markov Decision Process

- A collection of states S
- Can take an action a in each state s
- Next state s_{t+1} depends on current state s_t and current action a_t
- Receive reward (payment) $r_t = r(s_t)$
- Discount factor δ : future rewards exponentially discounted
- Goal: collect maximum expected sum of rewards

MDP + Value Iteration

- Let $V^*(s)$ be the maximum expected sum of rewards starting at state s
- Bellman optimality:

$$V^*(s) = r(s) + \delta \max_a \sum_{s'} P_{ss'}^a V^*(s')$$

- $P_{ss'}^a$ is probability of going to state s' from s if action a is taken
- Value iteration (starting at $V_0(s) = r(s)$):

$$V_{n+1}(s) \leftarrow r(s) + \delta \max_a \sum_{s'} P_{ss'}^a V_n(s')$$

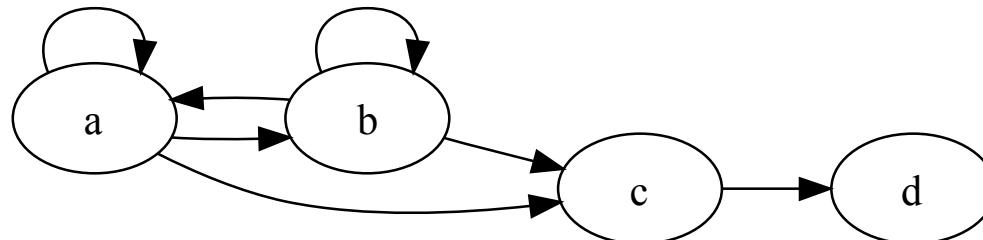
Value Iteration

- Provably converges to V^*
- Standard implementation updates values synchronously; as long as values for all states keep being updated, asynchronous variant also converges
- Requires broadcast transmission of the entire vector V_n in every step
- Requires storing the entire table of transition probabilities, etc, of total size $|S||A|$
- Cannot break this up into independent subproblems: no independent subsets of values

Dependency Graph

Definition

- Each node i represents a computational task
 - Computing $V^*(s)$ (and intermediate $V_s(s)$)
- A directed edge from i to j means that i depends on data generated by j
 - A non-zero probability of going from state s to s' means that $V(s)$ and $V(s')$ depend on each other
 - A task can depend on itself



Using Dependency Graph

- Can be specified/change dynamically
- Don't need to broadcast the entire value vector: nodes can query current value from each neighbor
- Much smaller storage requirements for each node (only information about itself and neighbors)

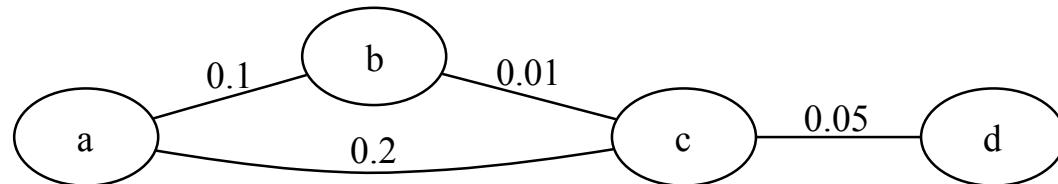
Using Dependency Graph

- **Fault tolerance via replication**
 - If node i detects that its neighbor has failed, send request to the system to restart that computation
- **Checkpointing:**
 - Intermediate results can be multicast to nodes that depend on task i (this could be the data required by these neighbors anyway)
 - If i fails, it can be hot-started based on intermediate results
 - Checkpointing can be (potentially) less frequent

Substitution Graph

Substitution Graph

- Edge between i and j means that computation performed at node i can be substituted by that at node j (and vice versa)
- Assume substitution relationships are reciprocal (undirected edges); not really necessary, but convenient
- Substitution can be imperfect: an edge has a weight representing an upper bound on error introduced by substitution
- Can be dynamic: graph can change “on the fly”



Transitivity of Substitution

- Note that substitution relationships need not be transitive:
 - If we only include edges with error below some threshold e , can have $\text{error}(a,b) < e$, $\text{error}(b,c) < e$, but $\text{error}(a,c) > e$

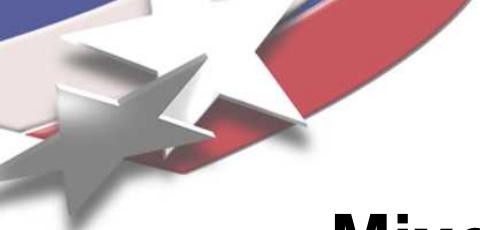
Fault Obliviousness via Substitution

- Suppose task i fails and another task j depends on its computation. Instead of replicating i , can substitute by k , incurring some error
- In general, substitution error depends on who uses the computation, so in general could have a different graph for each task
- Note that we can store it in a distributed way
 - each task stores only substitutions for tasks it depends on and corresponding weights

Trading Off Replication and Substitution

Notation

- Suppose errors are additive (e.g., using l_1 norm)
- w_{ijk} : error incurred by task k if computation it requires performed by i is substituted by j
- I : the set of failed tasks
- D_i : set of tasks that depend on I
- $v_i = 1$ iff i is substituted for (rather than replicated)
- $z_{ijk} = 1$ iff j substitutes for i for a dependent task k (repaces k 's dependence on i with j)



Mixed Integer Program Formulation

Objective: max # of substitutions
(minimize # of replications)

$$\max_{v,z} \sum_{i \in I} v_i$$

Can account for the fact that subsets of tasks are allocated to different processors minimizing inter-processor communication by adding a constraint on the number of substitutions that cross processor boundaries

Only a single substitute for i, k

$$\sum_{j \notin I} z_{ijk} = v_i \quad \forall i \in I, k \in D_i$$

Don't substitute with failed tasks

$$z_{ijk} = 0 \quad \forall i, j \in I, k \in D_i$$

(unnecessary in practice)

Binary variables

$$v_i, z_{ijk} \in \{0, 1\}$$

Simplified Optimization

- Previous MIP is NP-Hard to solve, probably not something you can do in real time
- Let's simplify:
 - N_i : number of tasks that depend on i
 - $w_{ij} = \max_k w_{ijk}$
 - Focus on a best substitute for a failed i , with

$$w_i = N_i \min_{i \notin I} w_{ij}$$

Simplified MIP

Objective: max # of substitutions
(minimize # of replications)

$$\max_v \sum_{i \in I} v_i$$

Subject to:

Error budget

$$\sum_{i \in I} w_i v_i \leq \epsilon$$

Binary variables $v_i \in \{0, 1\}$

This is just a Knapsack problem; can be approximated by a simple, fast greedy heuristic:

***add tasks in increasing order of w_i ,
until error budget is saturated***

Obtaining Substitution Error Weights

- Upper bound on errors can be specified for the specific problem instance based on domain knowledge
- Empirical: observe data streams produced at different nodes and compare based on some relevant distance metric; if similar enough, add a substitution edge (and specify weight)
- Combined: specify edges a priori, but use empirical weights

Simulation Results: Value Iteration on the Grid World

Grid World

- An agent moves around the grid world
- Each cell represents a state and yields some reward r
- Agent can move up, down, left, right
- Resulting location is a probabilistic function of the move (agent is drunk)
 - Agent actually goes in the direction of his intended action with probability $p = 0.8$
 - Moves to any other adjacent location with equal probability
 - Grid boundaries are “walls” (no wrap around)

*Example
grid world*

! "#\$! "%\$! "&\$
! " \$! "&\$! "(\$
! "#\$! "&\$! "(\$

Value Iteration, Substitution Errors

- Set discount factor to 0.95
- Stopping criterion at 0.001 (stop once values are not changing by more than this)
- Values of neighboring states s and s' are close substitutes for one another; can bound error of such substitution (w_{ij}):

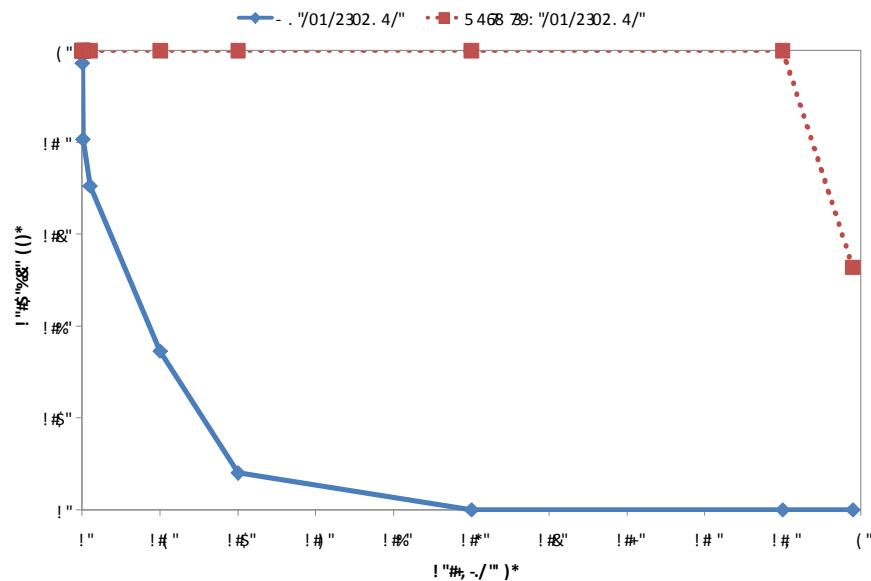
$$|V(s) - V(s')| \leq \frac{1 - \delta p}{1 - \delta}$$

Simulation Setup

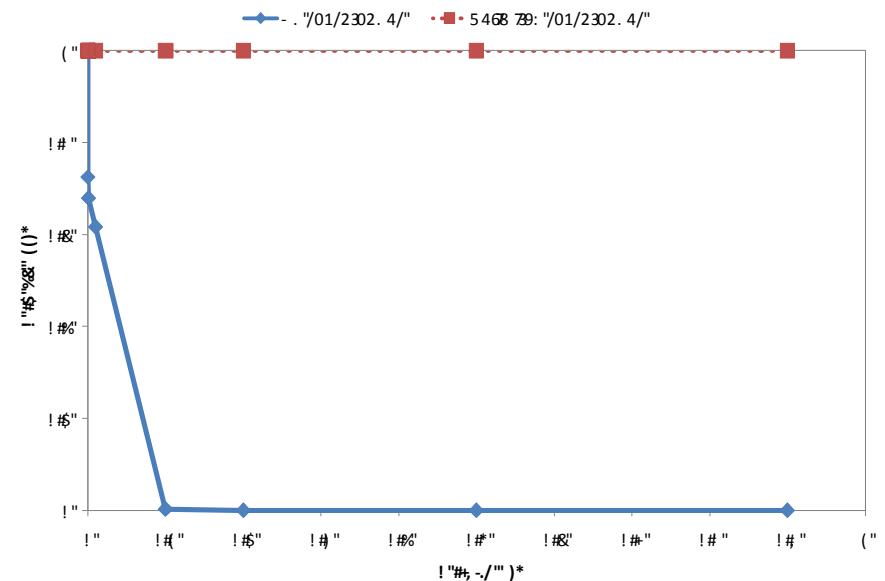
- Simulate a cluster; allocate a task per cluster node; run 100 iterations
- Nodes can fail and are fixed probabilistically (independently); $\frac{1}{2}$ of all processors are functional on average; initialized to steady state
- Number of tasks is $\frac{1}{2}$ of total number of nodes (saturate expected number of functioning processors)
- Compare pure replication (always replicate failed tasks) to pure substitution (always substitute)

Resilience to Failures

10x10 grid



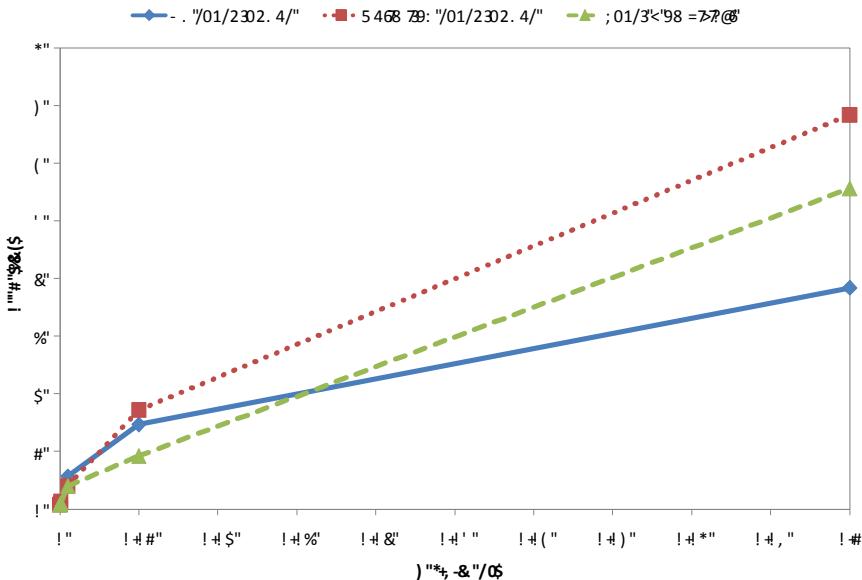
50x50 grid



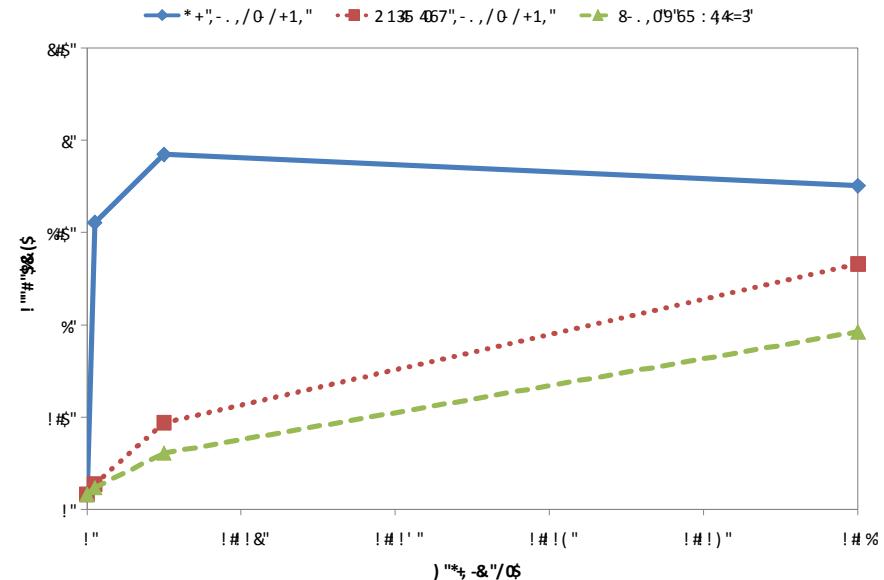
Advantage of substitution greater on a larger problem

Computation Error

10x10 grid



50x50 grid



Empirical substitution is best when individual node failure probability is low; advantage greater on the larger problem

Conclusions

- Novel architecture for fault tolerance/obliviousness using a combination of task dependency and substitution graphs
- Optimization problem formulates tradeoffs between replication and substitution; can approximately solve a simplified problem in real time
- Simulation results suggest that ability to substitute tasks is advantageous for resilience and keeps errors down