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Motivating Application: Distributed Value 
Iteration
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Markov Decision Process

• A collection of states S

• Can take an action a in each state s

• Next state st+1 depends on current state st and 
and current action at

• Receive reward (payment) rt = r(st)

• Discount factor : future rewards exponentially 
discounted

• Goal: collect maximum expected sum of rewards
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MDP + Value Iteration

• Let V*(s) be the maximum expected sum of 
rewards starting at state s

• Bellman optimality:
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• Pa
ss’ is probability of going to state s’ from s if 

action a is taken

• Value iteration (starting at V0(s) = r(s)):



Value Iteration

• Provably converges to V*

• Standard implementation updates values 
synchronously; as long as values for all states keep 
being updated, asynchronous variant also converges

• Requires broadcast transmission of the entire vector 
Vn in every step

• Requires storing the entire table of transition 
probabilities, etc, of total size |S||A|

• Cannot break this up into independent subproblems: 
no independent subsets of values
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Dependency Graph
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Definition

• Each node i represents a computational task

– Computing V*(s) (and intermediate Vs(s))

• A directed edge from i to j means that i depends 
on data generated by j

– A non-zero probability of going from state s to s’
means that V(s) and V(s’) depend on each other

– A task can depend on itself
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Using Dependency Graph

• Can be specified/change dynamically

• Don’t need to broadcast the entire value vector: 
nodes can query current value from each 
neighbor

• Much smaller storage requirements for each node 
(only information about itself and neighbors)
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Using Dependency Graph

• Fault tolerance via replication

– If node i detects that its neighbor has failed, send 
request to the system to restart that computation

• Checkpointing: 

– Intermediate results can be multicast to nodes that 
depend on task i (this could be the data required by 
these neighbors anyway)

– If i fails, it can be hot-started based on intermediate 
results

– Checkpointing can be (potentially) less frequent
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Substitution Graph
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Substitution Graph

• Edge between i and j means that computation performed at 
node i can be substituted by that at node j (and vice versa)

• Assume substitution relationships are reciprocal 
(undirected edges); not really necessary, but convenient

• Substitution can be imperfect: an edge has a weight 
representing an upper bound on error introduced by 
substitution

• Can be dynamic: graph can change “on the fly”
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Transitivity of Substitution

• Note that substitution relationships need not be 
transitive:

– If we only include edges with error below some 
threshold e, can have error(a,b) < e, error(b,c) < e, 
but error(a,c) > e
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Fault Obliviousness via Substitution

• Suppose task i fails and another task j depends 
on its computation.  Instead of replicating i, can 
substitute by k, incurring some error

• In general, substitution error depends on who 
uses the computation, so in general could have a 
different graph for each task

• Note that we can store it in a distributed way

– each task stores only substitutions for tasks it 
depends on and corresponding weights
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Trading Off Replication and Substitution
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Notation

• Suppose errors are additive (e.g., using l1 norm)

• wijk: error incurred by task k if computation it 
requires performed by i is substituted by j

• I: the set of failed tasks

• Di: set of tasks that depend on I

• vi = 1 iff i is substituted for (rather than replicated)

• zijk = 1 iff j substitues for i for a dependent task k
(repaces k’s dependence on i with j)
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Mixed Integer Program Formulation
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Objective: max # of substitutions 
(minimize # of replications)

Subject to:

Error budget

Only a single 
substitute for i,k

Don’t substitute 
with failed tasks

(unnecessary in 
practice)

Binary variables

Can account for the fact that subsets of tasks are 
allocated to different processors minimizing inter-
processor communication by adding a constraint on the 
number of substitutions that cross processor boundaries



Simplified Optimization

• Previous MIP is NP-Hard to solve, probably not 
something you can do in real time

• Let’s simplify:

– Ni: number of tasks that depend on i

– wij = maxk wijk

– Focus on a best substitute for a failed i, with
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Simplified MIP
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Objective: max # of substitutions 
(minimize # of replications)

Subject to:

Binary variables

Error budget

This is just a Knapsack problem; can be approximated by a 
simple, fast greedy heuristic:

add tasks in increasing order of wi

until error budget is saturated



Obtaining Substitution Error Weights

• Upper bound on errors can be specified for the 
specific problem instance based on domain 
knowledge

• Empirical: observe data streams produced at 
different nodes and compare based on some 
relevant distance metric; if similar enough, add a 
substitution edge (and specify weight)

• Combined: specify edges a priori, but use 
empirical weights
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Simulation Results: Value Iteration on the 
Grid World
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Grid World

• An agent moves around the grid world

• Each cell represents a state and yields some reward r

• Agent can move up, down, left, right

• Resulting location is a probabilistic function of the move (agent is 
drunk)

– Agent actually goes in the direction of his intended action with 
probability p = 0.8

– Moves to any other adjacent location with equal probability

– Grid boundaries are “walls” (no wrap around)
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Value Iteration, Substitution Errors

• Set discount factor to 0.95

• Stopping criterion at 0.001 (stop once values are 
not changing by more than this)

• Values of neighboring states s and s’ are close 
substitutes for one another; can bound error of 
such substitution (wij):
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Simulation Setup

• Simulate a cluster; allocate a task per cluster 
node; run 100 iterations

• Nodes can fail and are fixed probabilistically 
(independently); ½ of all processors are 
functional on average; initialized to steady state

• Number of tasks is ½ of total number of nodes 
(saturate expected number of functioning 
processors)

• Compare pure replication (always replicate failed 
tasks) to pure substitution (always substitute)
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Resilience to Failures
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Computation Error
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Conclusions

• Novel architecture for fault 
tolerance/obliviousness using a combination of 
task dependency and substitution graphs

• Optimization problem formulates tradeoffs 
between replication and substitution; can 
approximately solve a simplified problem in real 
time

• Simulation results suggest that ability to 
substitute tasks is advantageous for resilience 
and keeps errors down
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