
Fault Oblivious HPC with Dynamic
Task Replication and Substitution

ISC ‘11, June 20, 2011

Yevgeniy Vorobeychik, Jackson Mayo, Rob
Armstrong, Ron Minnich, Don Rudish

Sandia National Labs

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,
a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National

Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2011-3733C

Outline

• Example (motivating) application domain

• The DAS Architecture

• Trading off replication and substitution

• The Grid World application

• Simulation results

2

Motivating Application: Distributed Value
Iteration

3

Markov Decision Process

• A collection of states S

• Can take an action a in each state s

• Next state st+1 depends on current state st and
and current action at

• Receive reward (payment) rt = r(st)

• Discount factor : future rewards exponentially
discounted

• Goal: collect maximum expected sum of rewards

4

MDP + Value Iteration

• Let V*(s) be the maximum expected sum of
rewards starting at state s

• Bellman optimality:

5

• Pa
ss’ is probability of going to state s’ from s if

action a is taken

• Value iteration (starting at V0(s) = r(s)):

Value Iteration

• Provably converges to V*

• Standard implementation updates values
synchronously; as long as values for all states keep
being updated, asynchronous variant also converges

• Requires broadcast transmission of the entire vector
Vn in every step

• Requires storing the entire table of transition
probabilities, etc, of total size |S||A|

• Cannot break this up into independent subproblems:
no independent subsets of values

6

Dependency Graph

7

Definition

• Each node i represents a computational task

– Computing V*(s) (and intermediate Vs(s))

• A directed edge from i to j means that i depends
on data generated by j

– A non-zero probability of going from state s to s’
means that V(s) and V(s’) depend on each other

– A task can depend on itself

8

a b

c d

Using Dependency Graph

• Can be specified/change dynamically

• Don’t need to broadcast the entire value vector:
nodes can query current value from each
neighbor

• Much smaller storage requirements for each node
(only information about itself and neighbors)

9

Using Dependency Graph

• Fault tolerance via replication

– If node i detects that its neighbor has failed, send
request to the system to restart that computation

• Checkpointing:

– Intermediate results can be multicast to nodes that
depend on task i (this could be the data required by
these neighbors anyway)

– If i fails, it can be hot-started based on intermediate
results

– Checkpointing can be (potentially) less frequent

10

Substitution Graph

11

Substitution Graph

• Edge between i and j means that computation performed at
node i can be substituted by that at node j (and vice versa)

• Assume substitution relationships are reciprocal
(undirected edges); not really necessary, but convenient

• Substitution can be imperfect: an edge has a weight
representing an upper bound on error introduced by
substitution

• Can be dynamic: graph can change “on the fly”

12

a

b0.1

c0.2

0.01

d
0.05

Transitivity of Substitution

• Note that substitution relationships need not be
transitive:

– If we only include edges with error below some
threshold e, can have error(a,b) < e, error(b,c) < e,
but error(a,c) > e

13

Fault Obliviousness via Substitution

• Suppose task i fails and another task j depends
on its computation. Instead of replicating i, can
substitute by k, incurring some error

• In general, substitution error depends on who
uses the computation, so in general could have a
different graph for each task

• Note that we can store it in a distributed way

– each task stores only substitutions for tasks it
depends on and corresponding weights

14

Trading Off Replication and Substitution

15

Notation

• Suppose errors are additive (e.g., using l1 norm)

• wijk: error incurred by task k if computation it
requires performed by i is substituted by j

• I: the set of failed tasks

• Di: set of tasks that depend on I

• vi = 1 iff i is substituted for (rather than replicated)

• zijk = 1 iff j substitues for i for a dependent task k
(repaces k’s dependence on i with j)

16

Mixed Integer Program Formulation

17

Objective: max # of substitutions
(minimize # of replications)

Subject to:

Error budget

Only a single
substitute for i,k

Don’t substitute
with failed tasks

(unnecessary in
practice)

Binary variables

Can account for the fact that subsets of tasks are
allocated to different processors minimizing inter-
processor communication by adding a constraint on the
number of substitutions that cross processor boundaries

Simplified Optimization

• Previous MIP is NP-Hard to solve, probably not
something you can do in real time

• Let’s simplify:

– Ni: number of tasks that depend on i

– wij = maxk wijk

– Focus on a best substitute for a failed i, with

18

Simplified MIP

19

Objective: max # of substitutions
(minimize # of replications)

Subject to:

Binary variables

Error budget

This is just a Knapsack problem; can be approximated by a
simple, fast greedy heuristic:

add tasks in increasing order of wi

until error budget is saturated

Obtaining Substitution Error Weights

• Upper bound on errors can be specified for the
specific problem instance based on domain
knowledge

• Empirical: observe data streams produced at
different nodes and compare based on some
relevant distance metric; if similar enough, add a
substitution edge (and specify weight)

• Combined: specify edges a priori, but use
empirical weights

20

Simulation Results: Value Iteration on the
Grid World

21

Grid World

• An agent moves around the grid world

• Each cell represents a state and yields some reward r

• Agent can move up, down, left, right

• Resulting location is a probabilistic function of the move (agent is
drunk)

– Agent actually goes in the direction of his intended action with
probability p = 0.8

– Moves to any other adjacent location with equal probability

– Grid boundaries are “walls” (no wrap around)

22

! "#$! "%$! "&$

! "' $

! "#$

! "&$! "($

! "&$! "($

Example
grid world

Value Iteration, Substitution Errors

• Set discount factor to 0.95

• Stopping criterion at 0.001 (stop once values are
not changing by more than this)

• Values of neighboring states s and s’ are close
substitutes for one another; can bound error of
such substitution (wij):

23

Simulation Setup

• Simulate a cluster; allocate a task per cluster
node; run 100 iterations

• Nodes can fail and are fixed probabilistically
(independently); ½ of all processors are
functional on average; initialized to steady state

• Number of tasks is ½ of total number of nodes
(saturate expected number of functioning
processors)

• Compare pure replication (always replicate failed
tasks) to pure substitution (always substitute)

24

Resilience to Failures

25

! "

! #$"

! #%"

! #&"

! #' "

("

! " ! #(" ! #$" ! #) " ! #%" ! #*" ! #&" ! #+" ! #' " ! #, " ("

!
"#

$
"%

&"
'(

()
*

! "#+, -./ "')*

- . "/01/2302. 4/" 5 4678 739: "/01/2302. 4/"

! "

! #$"

! #%"

! #&"

! #' "

("

! " ! #(" ! #$" ! #) " ! #%" ! #*" ! #&" ! #+" ! #' " ! #, " ("

!
"#

$
"%

&"
'(

()
*

! "#+, -./"')*

- . "/01/2302. 4/" 5 4678 739: "/01/2302. 4/"

10x10 grid 50x50 grid

Advantage of substitution greater on a larger problem

Computation Error

26

! "

#"

$"

%"

&"

' "

("

) "

*"

! " ! +! #" ! +! $" ! +! %" ! +! &" ! +! ' " ! +! (" ! +!) " ! +! *" ! +! , " ! +#"

!"
"#

"$
%&

'(
$

) "*+, -&. "/0$

- . "/01/2302. 4/" 5 4678 739: "/01/2302. 4/" ; 01/3"<"98 =7>7?@6"

! "

! #$"

%"

%#$"

&"

&#$"

! " ! #! ! &" ! #! ! ' " ! #! ! (" ! #! !) " ! #! %"

!"
"#

"$
%&

'(
$

) "*+, -&. "/0$

* +", - . , / 0- / +1, " 2 1345 4067", - . , / 0- / +1, " 8- . , 0"9"65 : 4;4<=3"

10x10 grid 50x50 grid

Empirical substitution is best when individual node
failure probability is low; advantage greater on the
larger problem

Conclusions

• Novel architecture for fault
tolerance/obliviousness using a combination of
task dependency and substitution graphs

• Optimization problem formulates tradeoffs
between replication and substitution; can
approximately solve a simplified problem in real
time

• Simulation results suggest that ability to
substitute tasks is advantageous for resilience
and keeps errors down

27

