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What is the Phase Transformation Mechanism?
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Phase Transformations are Critical to Battery Performance
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+ Li-ion battery performance depends critically on i

+ Electron transport properties
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What is the Phase Transformation Mechanism?

X-ray absorption near-edge spectra distinguish LiFePO, nanoparticles from a 10%-
Fe?* and Fe®* charged commercial battery cathode
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Chueh, Lai et al., 2011

Need higher spatial resolution: TEM

Direct Observation of Li Front During Transformation

+ Low-loss region of EELS spectrum
+ LiK-edgeat55eV
+ Plasmon peak overlap
+ M-edge overlap Mn (49 eV) and Fe (54 eV)

+ Core-loss region
+ ELNES can be used to measure valence of transition metals
+ Mn: Wang et al., APL, 70, 1997
+ Fe: Cosandey et al., Micron, 2011; Laffont et al., Chem Mater, 18, 2006
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Direct Observation of Li Front During Transformation

+ Low-loss region of EELS spectrum
+ LiK-edgeat55eV
+ Plasmon peak overlap
+ M-edge overlap Mn (49 eV) and Fe (54 eV)

+ Core-loss region gL
s Okamoto et al., 2005
4+ ELNES can be used to measure valence of transition metals

+ Mn: Wang et al., APL, 70, 1997

+ Fe: Cosandey et al., Micron, 2011; Laffont et al., Chem Mater, 18, 2006
4+ Li distribution is inferred

+ Li'Fe”*PO; — Li" +e +Fe™'PO;

+ Li*Mn}>*O} — Li*+e +2Mn*"O7

Direct Observation of Li Front During Transformation

+ Low-loss region of EELS spectrum
+ LiK-edgeat55eV
+ Plasmon peak overlap
+ M-edge overlap Mn (49 eV) and Fe (54 eV)

+ Core-loss region gL
Okamoto et al., 2005
+ ELNES can be used to measure valence of transition metals
+ Mn: Wang et al., APL, 70, 1997
+ Fe: Cosandey et al., Micron, 2011; Laffont et al., Chem Mater, 18, 2006
+ Li distribution is inferred
+ Li'Fe”*PO; — Li" +e +Fe™'PO;
+ Li'Mn)>*O} — Li*+e +2Mn*"O7
+ Combine both regions and look for correlations using multivariate
statistical analysis (MSA) routines




Reference Spectra for Pure States

+ LiFePO, purchased from MTI Xtal

+ Chemically delithiated/oxidized by soaking in NO,BF, for 3 days in
glove box
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glove box

T T T T
JEOL 2010F and GIF 2000

H Monochromated Beam
£ Laffont et al., Chem Mater, 18, 2006
4 3 4 q

0 L L L
700 705 710 715 720
E (eV)

+ Electrochemically crged LiFePO,/FePO,

T T T T T T
Electrochecmially Delithiated in Coin Cell
JEOL 2010F GIF 2000

Electrochemical
cycling performed
by W. Lai MSU

H . L h [N | I D D SR B
20 40 60 80 690 700 710 720 730 740 750 760
E (eV)




Reference Spectra for Pure States

+ LiMn,0O, purchased from Sigma Aldrich and soaked in NO,BF,
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+ Double-Step BG subtraction .,
Pearson et al., PRB, 47 1993 f e
+ LiMn,O,: L3/1.2=2.15 30 v Wanget al,,
(Mn35+) g APL, 70, 1997
+ Mn204: L3/L2=5.69
(Mn**)?
+ Oxidized L3/L2 ratio is larger but —
it should be smaller D s

Electron Beam-Induced Reduction

+ Beam-induced reduction of Fe3* has been observed in
FePO,*2H,0

+ Pan et al., Ultramicroscopy, 110, 2010

+ STEM-EELS spectrum image
+ 1 s/pixel
+ 50 pixels
+ 30 um condenser aperture
+ 1 nm spot size

Increasing electron fluence (e/nm?)




Electron Beam-Induced Reduction

+ Beam-induced reduction of Fe3* has been observed in
FePO,*2H,0

+ Pan et al., Ultramicroscopy, 110, 2010
STEM-EELS spectrum image
+ 1 s/pixel v

+ 50 pixels
+ 30 um condenser aperture
+ 1 nm spot size

First Spectrum

Electron Beam-Induced Reduction

+ Measured beam current with Gatan 646 holder Faraday cup

+ STEM Probes
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Electron Beam-Induced Reduction

+ Measured beam current with Gatan 646 holder Faraday cup
+ STEM Probes
+ CTEM/EFTEM
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Is EFTEM Sensitive Enough?

+ Scraped powder from a coin cell electrode
charged to 90% o
+ 90% FePO, 730 eV image -

+ 10% LiFePO, 5 eV slit

+ EFTEM SI .
+ 5eVslit; [680:780]
+ SDSD drift corrected
+ B. Schaeffer et al., Ultramicroscopy, 102, 2004
+ AXSIA eigenanalysis and MCR-ALS
4+ P Kotula et al., Micros & Microa, 9, 2003
+ P Kotula et al., Micros & Microa, 12 2006

Varimax rotated spatial simplicity

4+ M. Keenan, Surf and Int Anal, 41, 2009
No weighting (artifacts)

+ Electron/photon relationship

+ Dark current drift

+ Non-linear thickness (>0.5 t/ 1) effects
‘Wed 2-2:15 A06B P. Kotula Multivariate Statistical
Analysis Strategies of EELS Spectral Images




Is EFTEM Sensitive Enough?

+ Scraped powder from a coin cell electrode
charged to 90%

+ 90% FePO,
+ 10% LiFePO,

EFTEM SI
5 eV slit; [680:780]
SDSD drift corrected
+ B. Schaeffer et al., Ultramicroscopy, 102, 2004
AXSIA eigenanalysis and MCR-ALS 0.014

+ P Kotula et al., Micros & Microa, 9, 2003 J(z_ev

4+ P Kotula et al., Micros & Microa, 12 2006 Dl

Varimax rotated spatial simplicity 0.012

4+ M. Keenan, Surf and Int Anal, 41, 2009

Intensity

0.011 \
No weighting (artifacts) \
+ Electron/photon relationship 0.01 u /’\,c

+ Dark current drift

0.009

+ Non-linear thickness (>0.5 t/ 1) effects
Wed 2-2:15 A06B P. Kotula Multivariate Statistical 040086
Analysis Strategies of EELS Spectral Images

Microstructural Fidelity?

+ Scraping material off changes the arrangement and
microstructure of particle

4+ Want to freeze the microstructure and view it as is

+ Conventional TEM sample prep
+ Punch 3-mm disc
+ Tonmill Al current collector away from one side

4+ Ionmill electrode from both sides

Al current collector—»
Al current collector—» :
Polymer binder-

A -
Polymer binder+ i LiFePO,+ e
LiFePO,+ — - S Conductive C
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0% Charged: Thickness

Thickness Map

Zero-Loss Image
5 eV slit

0% Charged: Core Loss

Zero-Loss Image
5 eV slit

1.15x107

5 eV slit

1 eV step

5 s integration time
Total time: 13 min (slit overhead) 1x10°
MCR Spatial Simplicity Calculations 9.5x10°
No Weighting
3 Components

1.1x10?

1.05x 102 _Thic

2 Fe

9x10°

8.5x10°




0% Charged: Low Loss

Zero-Loss Image
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50% Charged: Core Loss

Zero-loss image
2.5 eV slit

Mixture on Surface
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Mixture in Interior
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50% Charged: Core+Low

W Zero-loss image
2.5 eV slit

Mostly C
73% LiFePO,

Combined with Volume tool
Drift Corrected with SDSD
MLSQ fits to quantify
amount of lithiation

Future Work: Solid
P
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Summary

+ The Fe ELNES shape allows us to
determine whether a phase is
LiFePO, or FePO,

Monoch ed Beam
Laffont et al., Chem Mater, 18, 2006
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Summary

+ The Fe ELNES shape allows us to
determine whether a phase is
LiFePO, or FePO,

1x10"

4+ Electron beam induced reduction
can occur during STEM EELS, but .
can be avoided in EFTEM.
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Summary

+ The Fe ELNES shape allows us to
determine whether a phase is
LiFePO, or FePO,

Electron beam induced reduction
can occur during STEM EELS, but
can be avoided in EFTEM

MSA calculations can help
differentiate LiFePO, from FePO,
in EFTEM data

Summary

The Fe ELNES shape allows us to
determine whether a phase is
LiFePO, or FePO,

Electron beam induced reduction
can occur during STEM EELS, but
can be avoided in EFTEM

MSA calculations can help
differentiate LiFePO, from FePO,
in EFTEM data

Volume manipulation + SDSD
allows us to combine low loss and
core loss data stacks for MSA
analysis




Conclusions

+ MSA + EFTEM shows promise as a technique for

measurement of the interphase interface in transition metal
battery electrode materials

+ Much of the MSA calculation is dominated by thickness

effects, and it is not clear that much 1s gained from the low
loss region

+ Carbon becomes a component
4+ Deconvolution has been unsuccessful

+ Future work with FIBed samples could be more promising




