

Office of Nonproliferation and Verification Research and Development

UF₆ Cylinder Identification Workshop Summary

Co-Sponsored by Office of Nonproliferation and International Security,
Next Generation Safeguards Initiative (NGSI)(NA-21)

May 10 – 11, 2011
Dianna S. Blair and Heidi Smartt
Sandia National Laboratories

Sandia National Laboratories is a multi program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Workshop Goal

- **Continue discussions on identifying longer term R&D needs for cylinder identification**
- **Share and document information from various stakeholders on lifecycle of UF₆ cylinders**
- **Generate *needs* document articulating stakeholder requirements for identifying UF₆ cylinders**

Future Challenges

- **More pressure on Domestic and International Safeguards resources**
 - Expansion of nuclear power
 - Globalization of nuclear fuel cycle
 - Reporting requirements
 - Implementation of the additional protocol
 - State level assessments
 - Financial pressures

Background

- **Acquisition of weapons grade material is generally recognized as most difficult proliferation step**
- **Misuse of uranium in UF₆ form is especially troublesome**
 - Enrichment based on commercial technologies and facilities
 - Dissemination of centrifuge technology through illicit networks

UF₆ Cylinders

- **Inter, intra-plant shipments of UF₆ through the nuclear fuel cycle**
 - **48Y cylinders**
 - *Natural uranium or tails (depleted) material*
 - *Contain approximately 8450 kg*
 - *Annual shipments of 9100 per year*
 - **30B cylinders**
 - *Low enriched uranium*
 - *Contain approximately 1500 kg*
 - *Annual shipments of 6600 per year*
- **Global inventory of cylinders is larger**
 - U.S. DOE's inventory of depleted UF₆ cylinders exceed 57,000

Reporting Requirements

- IAEA tracks UF₆ material inside cylinders
 - nuclear material accounting,
 - inspections,
 - and NPT transit matching of shipments with receipts.
- Material in a cylinder
 - reported at individual cylinder level
 - *batch with an identification number*
 - *some facilities report the serial number on the cylinder for identification*
 - currently no tracking of cylinders
 - *no requirements for cylinders to possess unique numbers or identifiers*

2009 Study on Tracking Cylinders for Nonproliferation Community

- **Following benefits from registration and global monitoring of all UF₆ cylinders:**
 - Ensure proper processing, shipment and delivery
 - Improve safeguards and industrial efficiency
 - *automating accounting for inventory and shipment manifests*
 - Enhance safeguards effectiveness
 - *enabling more timely detection of potential cylinder misuse and diversion*
 - *Deters use of unregistered cylinders to conceal undeclared production or diversion of UF₆*
 - Support IAEA State-level assessments and global information analysis to verify nuclear material commerce and cylinder shipments between States

2009 URENCO Workshop

- **Concluded need for an industry standard cylinder identification (ID) system for UF₆ cylinders.**
- **Recognized need for global standard**
 - unique ID numbering
 - systematic and permanent way of marking the ID on the cylinders
 - automated methods of reading cylinder IDs
- **Fundamental for tracking of cylinders and for the accounting of uranium contained within them**

2010 NA22/NA24 Workshop for Global Monitoring of UF₆ Cylinders

- **5 year program plan was established**
 - Proof-of-concept demonstration of monitoring system
 - Recognized the need for leveraging existing technologies
- **Options could be presented through longer-term R&D**
 - Follow-on workshop was planned
 - March 8-9, 2011 Sandia National Laboratories, Albuquerque, NM

March 2011 Workshop Attendees

- **By invitation**
 - **Industry (AREVA, GE Hitachi Nuclear Energy, URENCO, Uranium Disposition Services, USEC, Westerman, Advanced Process Technology Systems, LLC)**
 - **IAEA**
 - **DOE**
 - **National Laboratories**

March 2011 Workshop Format

- **Day 1-Presentations**
 - Industry
 - *Lifecycle of cylinders*
 - *Operational and environmental conditions*
 - *Identification needs and practices*
 - IAEA
 - *Tracking needs and practices*
- **Day 2-Working Groups**
 - Define the “what” of identifier not “how”

2011 Workshop Outcomes

- **Value in a consistent identification scheme**
 - Stakeholders applications varied
 - Operators- *inventory and process control*
 - Safeguards- *inventory and location verification*
 - IAEA expressed that identifier be
 - *Tamper-indicating*
 - *Authenticated*
- **Long life expectancy of cylinders so identifier must be**
 - **Durable**
 - **Robust**
 - **Technologically resilient**

Outcome

- **Increased understanding between various stakeholders**
 - Needs of broader community
 - Recognized how single identification system could improve overall
 - *Effectiveness*
 - *Efficiencies*
- **Provided information useful in determining longer term research needs and goals**