

Coarse Graining in Peridynamics

Stewart Silling

Multiphysics Simulation Technologies Department

Sandia National Laboratories
Albuquerque, New Mexico, USA

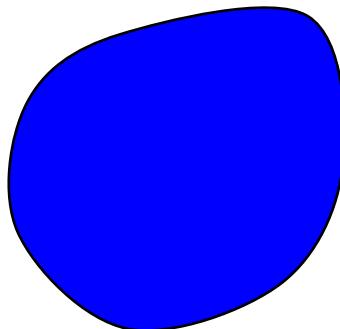
SES2011
Evanston, IL

October 12, 2011

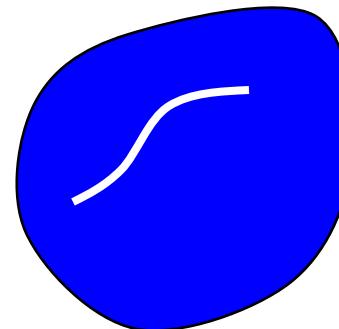
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy under contract DE-AC04-94AL85000.

Purpose of peridynamics

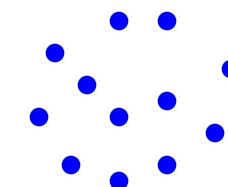
- To unify the mechanics of continuous and discontinuous media within a single, consistent set of equations.



Continuous body

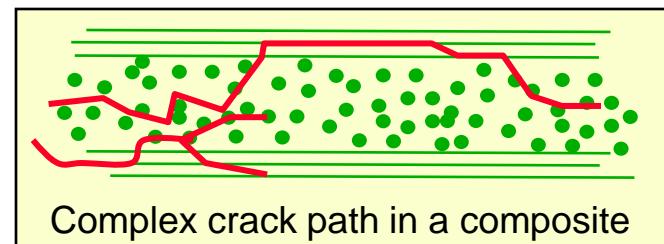


Continuous body
with a defect



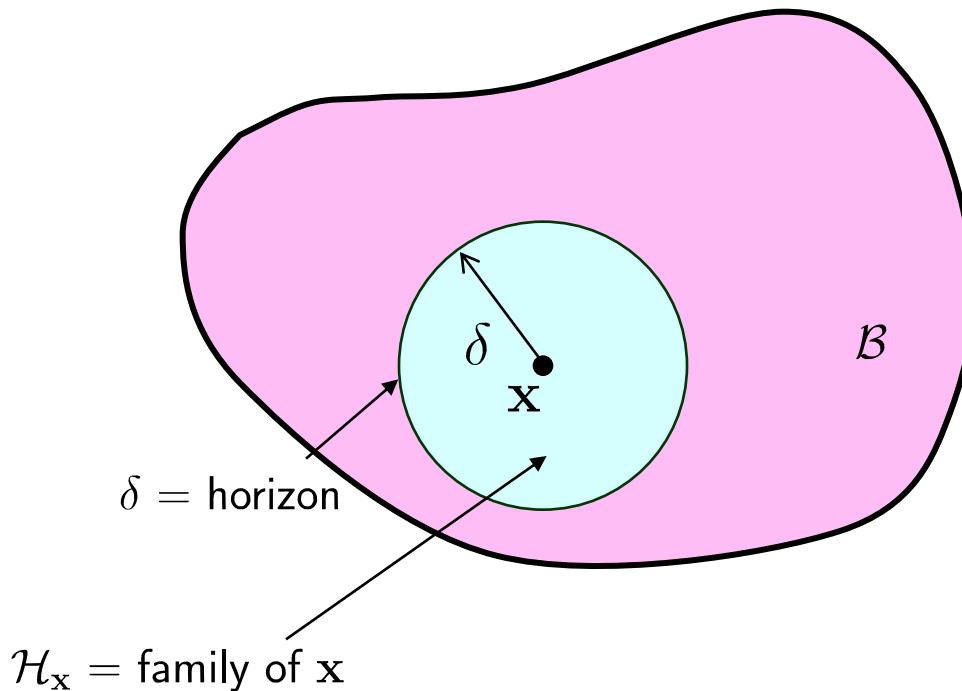
Discrete particles

- Why do this?
 - Avoid coupling dissimilar mathematical systems (A to C).
 - Model complex fracture patterns.
 - Communicate across length scales.



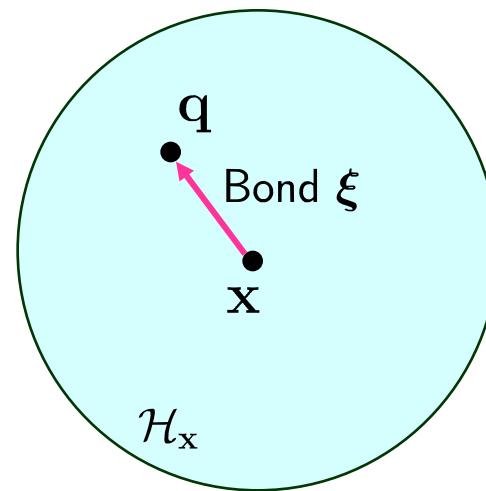
Peridynamics basics: Horizon and family

- Any point x interacts directly with other points within a distance δ called the “horizon.”
- The material within a distance δ of x is called the “family” of x , \mathcal{H}_x .



States

- A *state* is a function defined on all the bonds in \mathcal{H}_x .
- Notation for states: $\underline{\mathbf{A}}\langle \xi \rangle$.
- *Vector state*: $\underline{\mathbf{A}}\langle \cdot \rangle : \mathcal{H} \rightarrow \mathbb{R}^3$ where \mathcal{H} is the set of all the bonds in \mathcal{H}_x .



SS, Askari, Epton, Wecker, & Xu, Peridynamic States and Constitutive Modeling, J. Elast (2007)

Vector states take the place of tensors

- The *deformation state* maps each bond to its deformed image:

$$\underline{\mathbf{Y}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{y}(\mathbf{q}, t) - \mathbf{y}(\mathbf{x}, t).$$

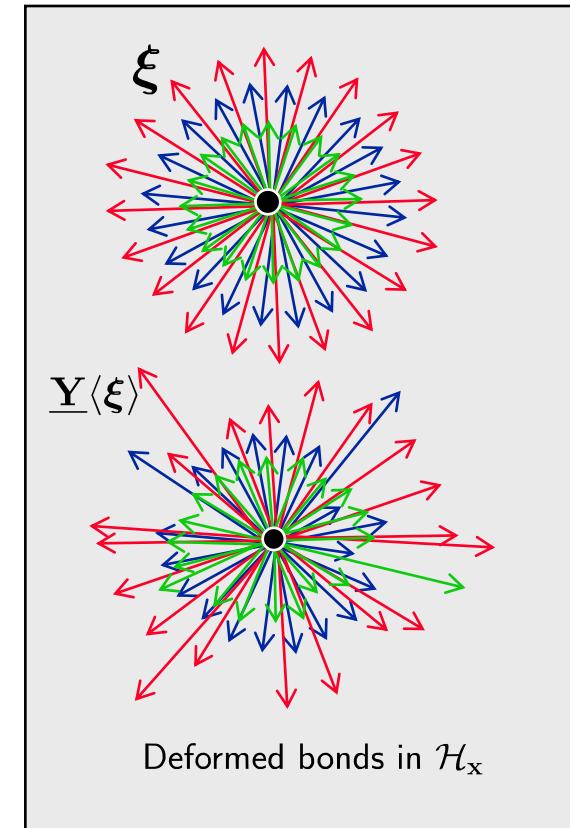
- The *force state* maps a bond to its *bond force*:

$$\underline{\mathbf{T}}\langle \mathbf{q} - \mathbf{x} \rangle = \mathbf{t}(\mathbf{q}, \mathbf{x}, t).$$

- Constitutive model is a state-valued function of a state:

$$\underline{\mathbf{T}} = \hat{\mathbf{T}}(\underline{\mathbf{Y}})$$

- Compare standard theory: $\boldsymbol{\sigma} = \hat{\boldsymbol{\sigma}}(\mathbf{F})$.



Summary of nonlinear, state based PD

- Equation of motion:

$$\rho(\mathbf{x})\ddot{\mathbf{y}}(\mathbf{x}, t) = \mathbf{L}(\mathbf{x}, t) + \mathbf{b}(\mathbf{x}, t)$$

where the internal force density at \mathbf{x} is given by

$$\mathbf{L}(\mathbf{x}, t) = \int_{\mathcal{H}_{\mathbf{x}}} \mathbf{f}(\mathbf{q}, \mathbf{x}, t) \, dV_{\mathbf{q}}$$

and \mathbf{b} is the body force density.

- Pairwise force density is given by

$$\mathbf{f}(\mathbf{q}, \mathbf{x}, t) = \mathbf{t}(\mathbf{q}, \mathbf{x}, t) - \mathbf{t}(\mathbf{x}, \mathbf{q}, t)$$

where \mathbf{t} is determined by the constitutive model:

$$\mathbf{t}(\mathbf{q}, \mathbf{x}, t) = \underline{\mathbf{T}}[\mathbf{x}, t]\langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{\underline{\mathbf{T}}}(\underline{\mathbf{Y}}).$$

Force state at \mathbf{x}, t

Constitutive model

Elastic materials

- Strain energy density:

$$W(\mathbf{x}, t) = \hat{W}(\underline{\mathbf{Y}}[\mathbf{x}, t])$$

- Compare standard theory:

$$W(\mathbf{x}, t) = \hat{W}(\mathbf{F}(\mathbf{x}, t)), \quad \mathbf{F} := \frac{\partial \mathbf{y}}{\partial \mathbf{x}}.$$

- Bond force:

$$\mathbf{t}(\mathbf{q}, \mathbf{x}, t) = \underline{\mathbf{T}} \langle \mathbf{q} - \mathbf{x} \rangle, \quad \underline{\mathbf{T}} = \hat{W}_{\underline{\mathbf{Y}}}(\underline{\mathbf{Y}})$$

where $\hat{W}_{\underline{\mathbf{Y}}}$ is the Fréchet derivative of \hat{W} with respect to $\underline{\mathbf{Y}}$.

Linearized peridynamics

- Suppose $|\mathbf{u}| \ll \delta$. Equilibrium equation becomes

$$\mathbf{L}(\mathbf{x}) + \mathbf{b}(\mathbf{x}) = \mathbf{0}$$

$$\mathbf{L}(\mathbf{x}) = \int_{\mathcal{N}} \mathbf{C}(\mathbf{x}, \mathbf{q}) (\mathbf{u}(\mathbf{q}) - \mathbf{u}(\mathbf{x})) \, dV_{\mathbf{q}}$$

where \mathbf{C} is the tensor-valued *micromodulus* function and \mathcal{N} has twice the radius of \mathcal{H} .

- \mathbf{C} involves the second Fréchet derivatives of strain energy density $\hat{W}_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}$:

$$\mathbf{C}(\mathbf{x}, \mathbf{q}) = \int_{\mathcal{B}} \left(\hat{W}_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}[\mathbf{x}] \langle \mathbf{p} - \mathbf{x}, \mathbf{q} - \mathbf{x} \rangle - \hat{W}_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}[\mathbf{p}] \langle \mathbf{x} - \mathbf{p}, \mathbf{q} - \mathbf{p} \rangle + \hat{W}_{\underline{\mathbf{Y}}\underline{\mathbf{Y}}}[\mathbf{q}] \langle \mathbf{x} - \mathbf{q}, \mathbf{p} - \mathbf{q} \rangle \right) \, dV_{\mathbf{p}}$$

- \mathbf{C} has the following symmetry:

$$\mathbf{C}^T(\mathbf{x}, \mathbf{q}) = \mathbf{C}(\mathbf{q}, \mathbf{x}) \quad \forall \mathbf{x}, \mathbf{q}.$$

- Linearized equilibrium equation is same as in Kunin's nonlocal theory (1983).

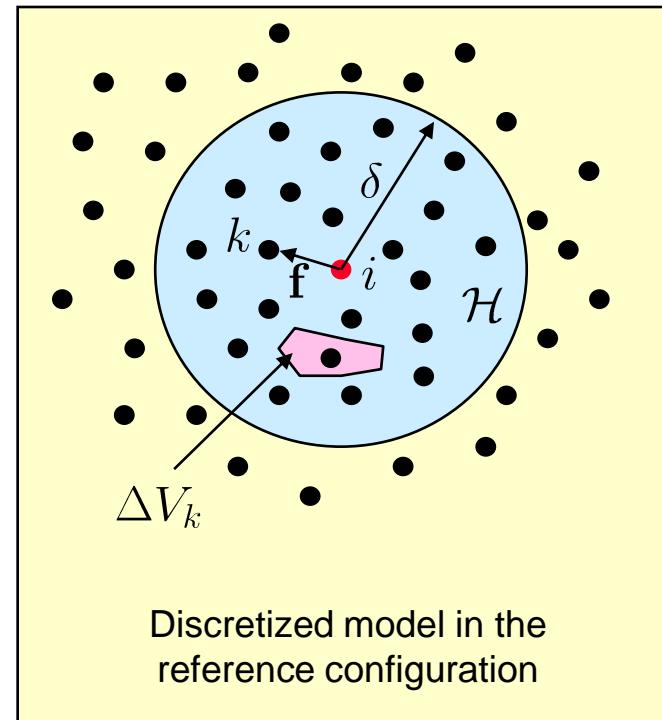
EMU (and LAMMPS) numerical method

- Integral is replaced by a finite sum: resulting method is meshless and Lagrangian.

$$\rho \ddot{\mathbf{y}}(\mathbf{x}, t) = \int_{\mathcal{H}} \mathbf{f}(\mathbf{q}, \mathbf{x}, t) dV_{\mathbf{q}} + \mathbf{b}(\mathbf{x}, t)$$

$$\rho \ddot{\mathbf{y}}_i^n = \sum_{k \in \mathcal{H}} \mathbf{f}(\mathbf{x}_k, \mathbf{x}_i, t) \Delta V_k + \mathbf{b}_i^n$$

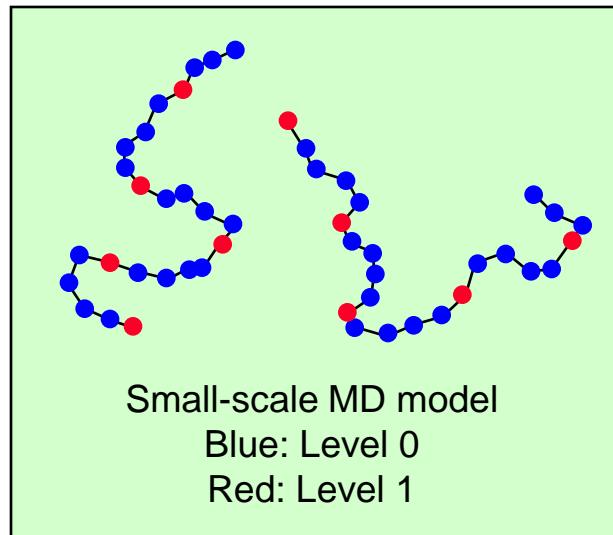
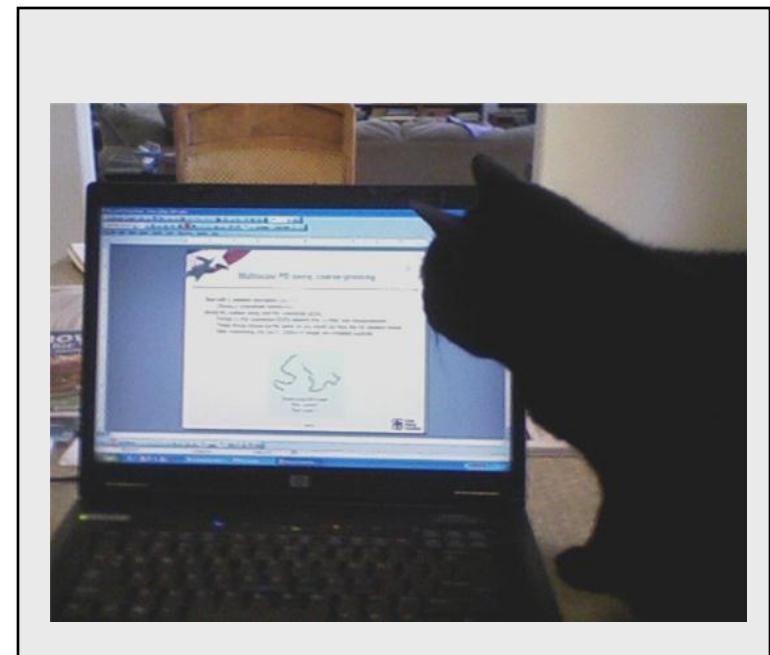
- Looks a lot like MD!
- LAMMPS implementation by M. Parks & . Seleson



Discretized model in the reference configuration

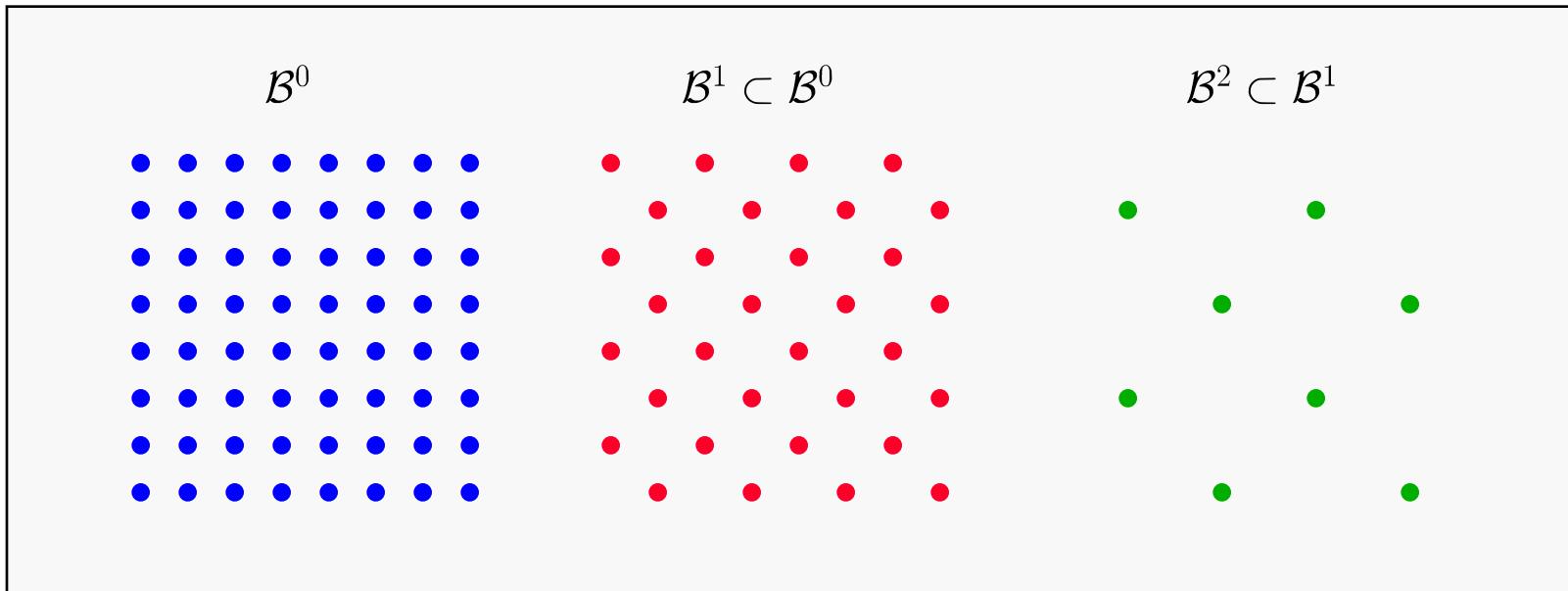
Multiscale PD using coarse-graining

- Start with a detailed description (**level 0**).
 - Choose a *coarsened* subset (**level 1**).
- Model the system using only the coarsened DOFs...
 - Forces on **level 1** DOFs depend only on their own displacements.
 - These forces should be the same as you would get from the full detailed model.
 - The **level 0** DOFs no longer appear explicitly.



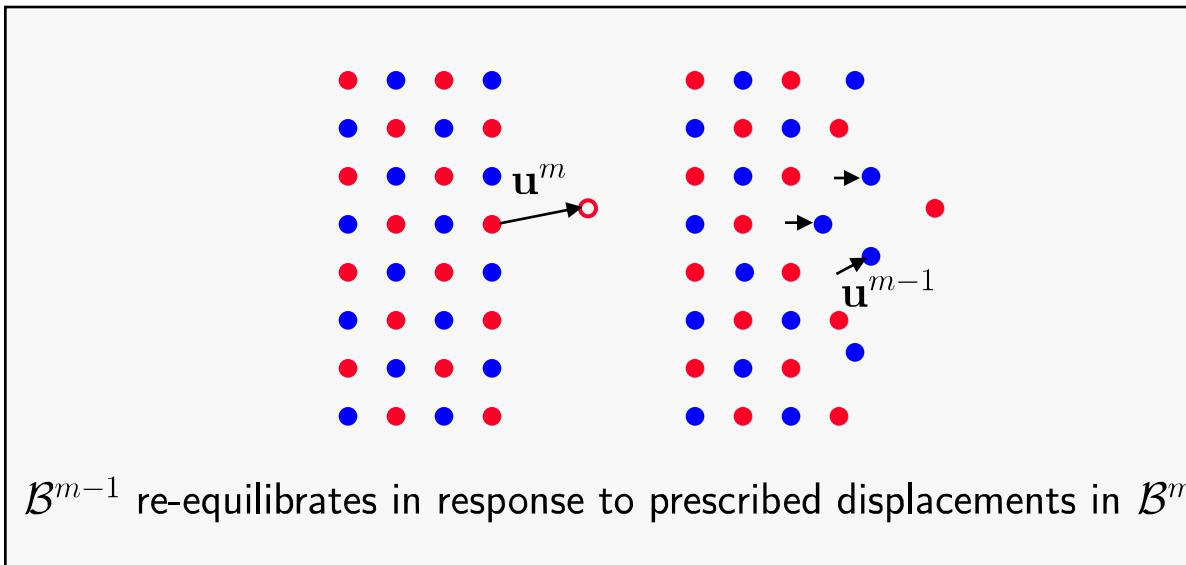
Coarse-graining: Reduce the number of degrees of freedom

- Start with a detailed “level 0” body \mathcal{B}^0 .
- Level 0 can be either continuous or discrete.
- Choose a sequence of M coarsened levels: $\mathcal{B}^M \subset \mathcal{B}^{M-1} \subset \dots \subset \mathcal{B}^1 \subset \mathcal{B}^0$.



Each level's displacements are determined by the next higher level

- Assumption: If \mathbf{u}^m is prescribed, the excluded DOFs in \mathbf{u}^{m-1} “float” (respond by changing their equilibrium displacements).



- Let \mathbf{S}^m be the solution operator that gives \mathbf{u}^{m-1} in terms of \mathbf{u}^m :

$$\mathbf{u}^{m-1}(\mathbf{x}) = \int_{\mathcal{B}^m} \mathbf{S}^m(\mathbf{x}, \mathbf{q}) \mathbf{u}^m(\mathbf{q}) \, dV_{\mathbf{q}}.$$

Each level has the same mathematical structure

- Equilibrium equation for level m involves only the level m displacements:

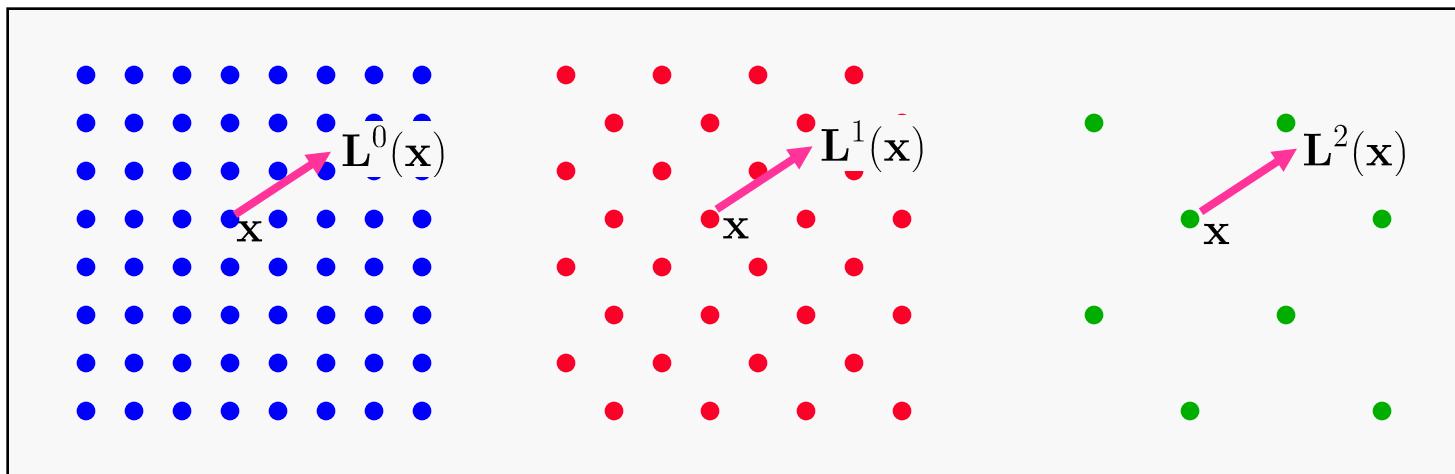
$$\mathbf{L}^m(\mathbf{x}) = \int_{\mathcal{B}^m} \mathbf{C}^m(\mathbf{x}, \mathbf{q})(\mathbf{u}^m(\mathbf{q}) - \mathbf{u}^m(\mathbf{x})) dV_{\mathbf{q}} = \mathbf{0}$$

where the level m micromodulus is found from

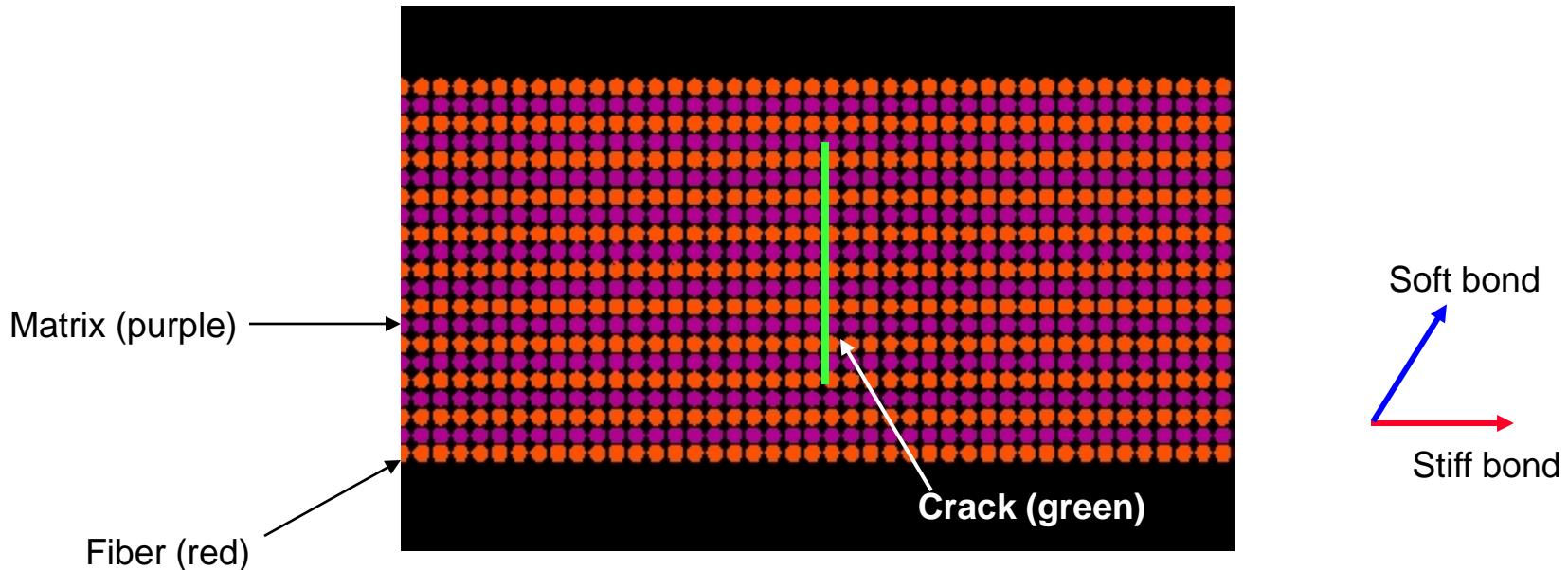
$$\mathbf{C}^m(\mathbf{x}, \mathbf{q}) = \int_{\mathcal{B}^{m-1}} \mathbf{C}^{m-1}(\mathbf{x}, \mathbf{p}) \mathbf{S}^m(\mathbf{p}, \mathbf{q}) dV_{\mathbf{p}}.$$

- If loads or displacements in \mathcal{B}^M are prescribed, the forces are invariant through the levels:

$$\mathbf{L}^0 = \mathbf{L}^1 = \dots = \mathbf{L}^{M-1} = \mathbf{L}^M$$

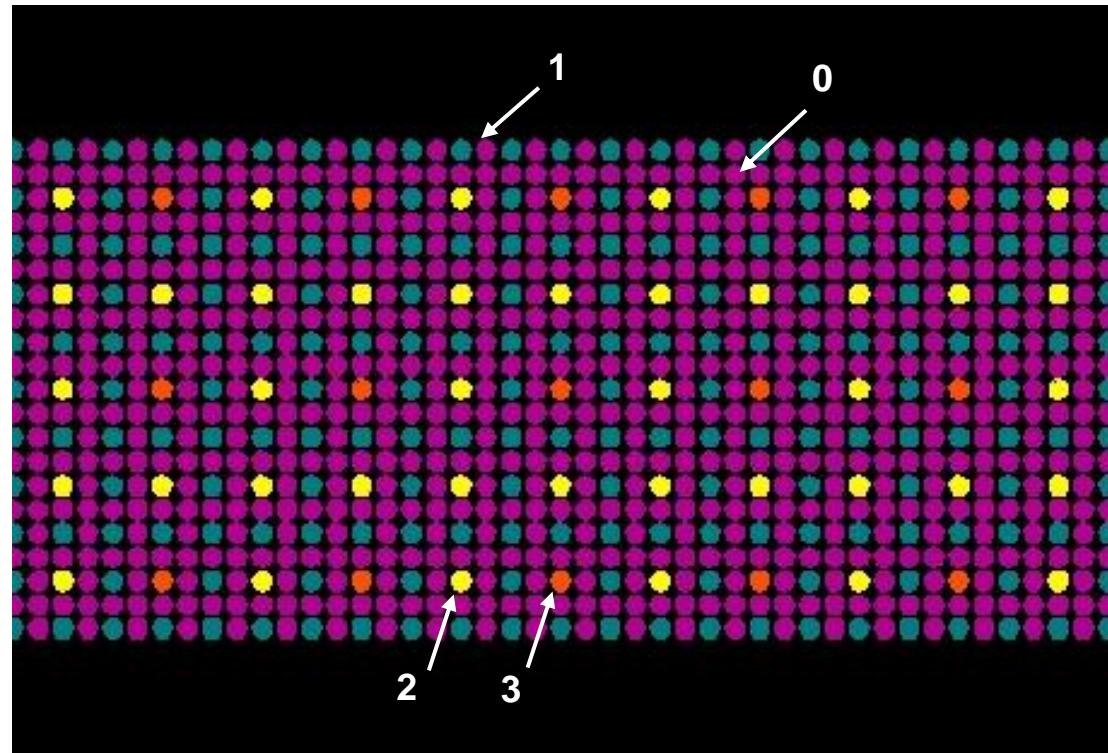


Example: Composite with a crack



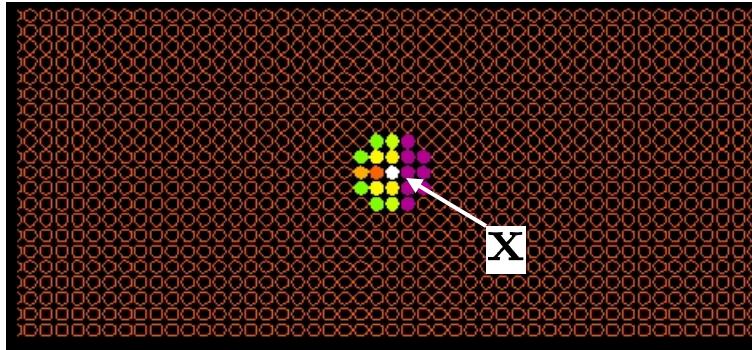
- Crack is inserted into the level 0 model: bonds crossing the crack are ignored.
- $C(x, q) = 0$ whenever x and q are on opposite sides of the crack.

3 levels of coarsening

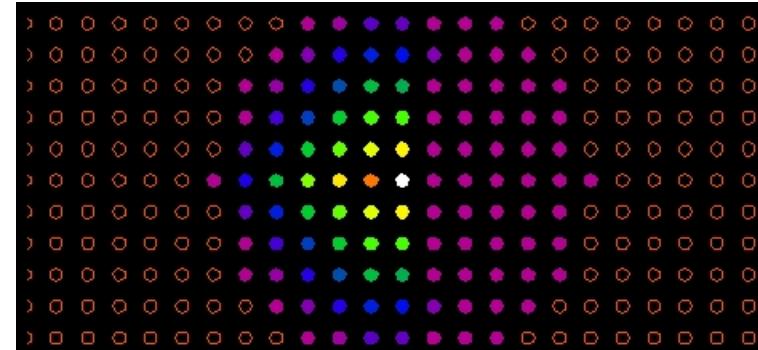


- Purple: Level 0
- Green: Level 1
- Yellow: Level 2
- Red: Level 3
- Each level $m + 1$ has $1/4$ as many nodes as level m .

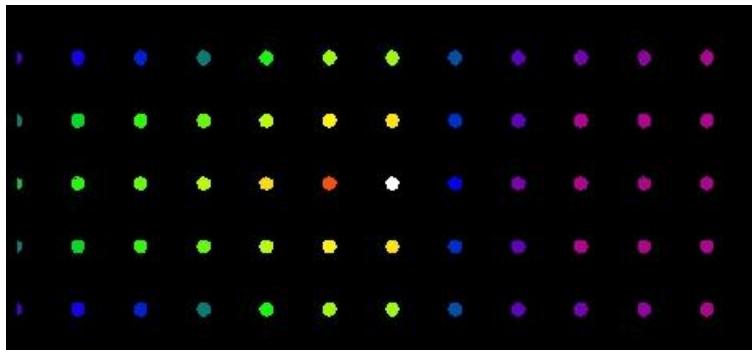
Composite bar with defect: Coarsened micromodulus



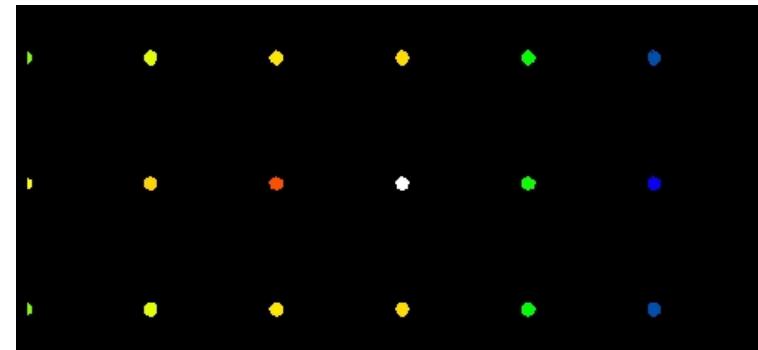
Level 0



Level 1



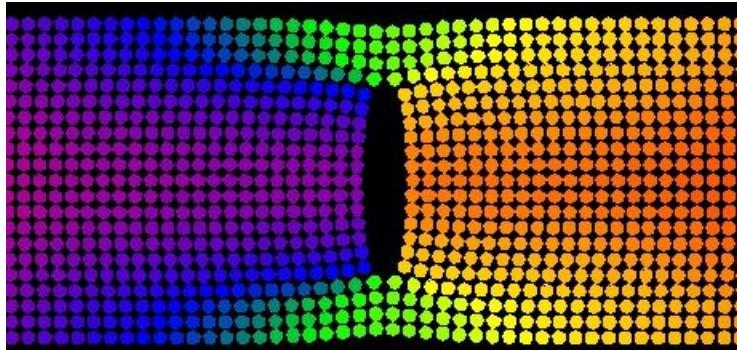
Level 2



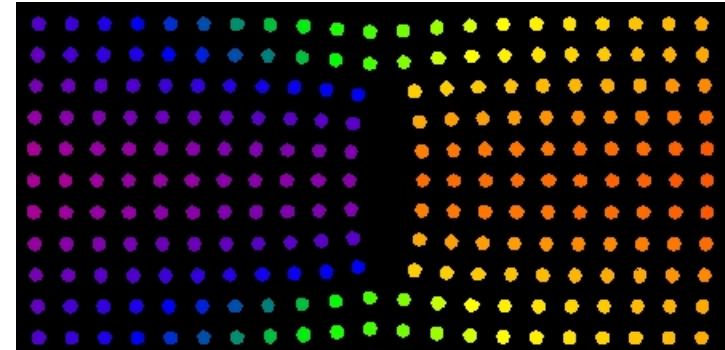
Level 3

- Figures show contours of $\log |\mathbf{C}^m(\mathbf{x}, \cdot)|$ where \mathbf{x} is the white dot, $m = 0, 1, 2, 3$.
- This \mathbf{x} is near the crack surface.
- The effect of the crack on the micromodulus is visible in all levels.

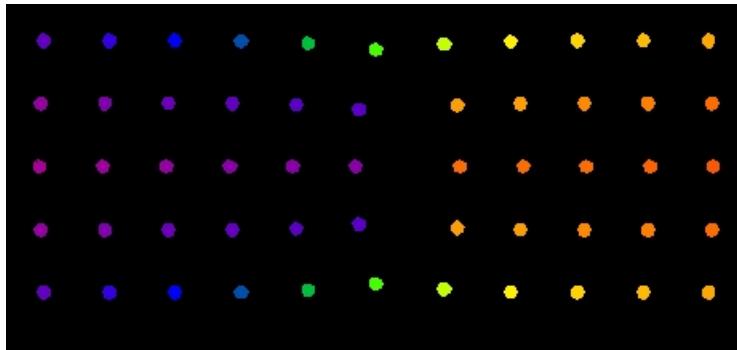
Composite bar with defect: Displacements



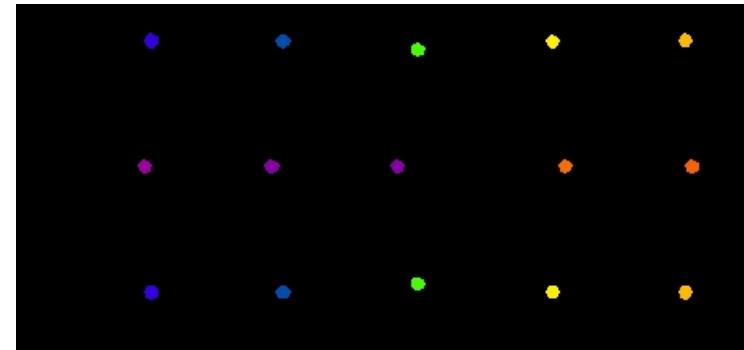
Level 0



Level 1



Level 2



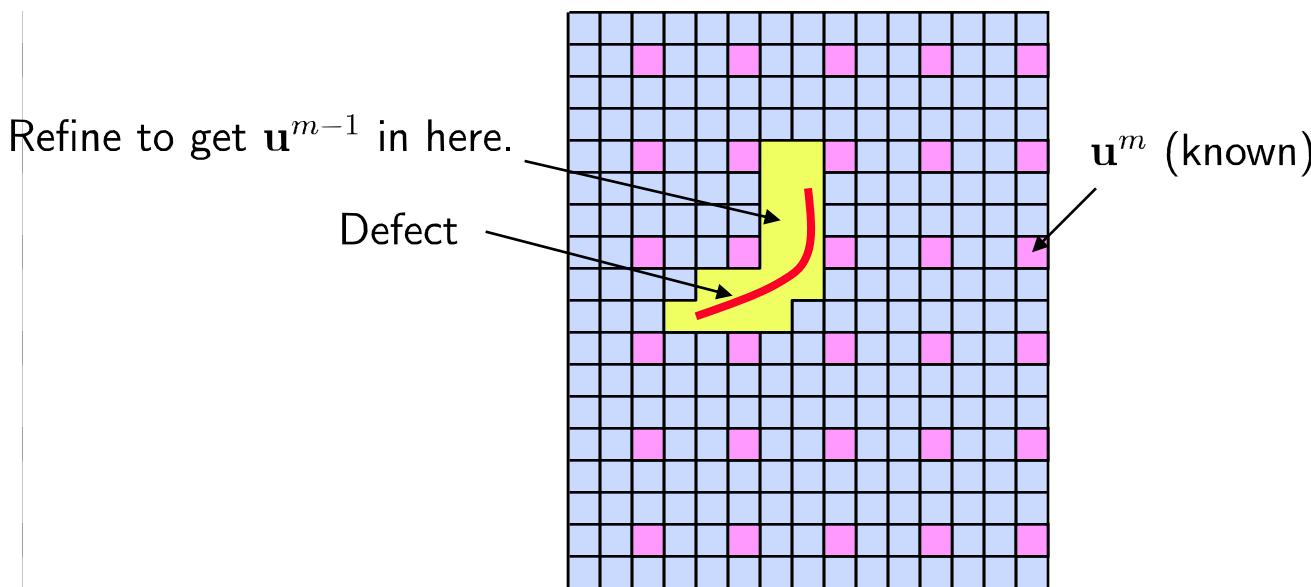
Level 3

- The same boundary value problem is solved at each level m , where $m = 0, 1, 2, 3$.
- Figures show contours of u_1^m .
- Displacements at all nodes and total force on ends agree between levels.

Remarks

- In practice, \mathbf{S}^m has to be found numerically by discretizing the level $m-1$ equilibrium equation.
- We can *refine* in some region of interest by reversing the coarsening procedure.

$$\mathbf{u}^{m-1}(\mathbf{x}) = \int_{\mathcal{B}^m} \mathbf{S}^m(\mathbf{x}, \mathbf{q}) \mathbf{u}^m(\mathbf{q}) \, dV_{\mathbf{q}}$$



Coarse graining in dynamics: Strong nonlocality in time

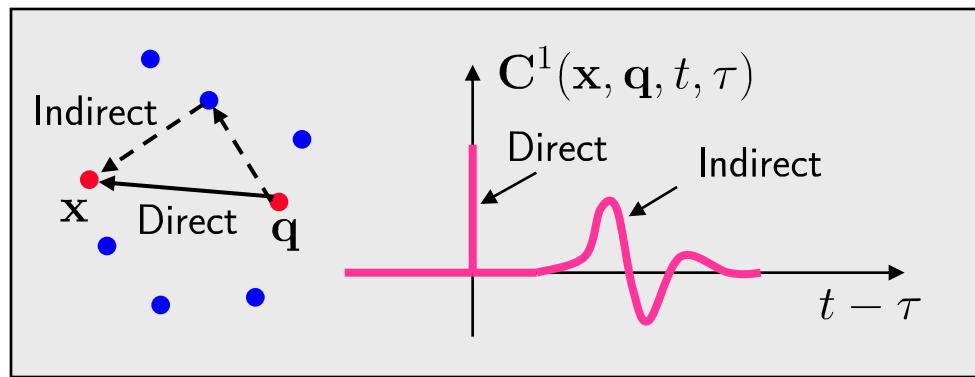
- Prescribe \mathbf{u}^1 over time as well as position.
- Solution operator in \mathcal{B}^0 is now time-dependent:

$$\mathbf{u}^0(\mathbf{x}, t) = \int_{-\infty}^{\infty} \int_{\mathcal{B}^1} \mathbf{S}^{0,1}(\mathbf{x}, \mathbf{q}, t, \tau) \mathbf{u}^1(\mathbf{q}, \tau) dV_{\mathbf{q}} d\tau.$$

- End up with time-dependent coarsened micromodulus:

$$\mathbf{L}^1(\mathbf{x}, t) = \int_{-\infty}^{\infty} \int_{\mathcal{B}^1} \mathbf{C}^1(\mathbf{x}, \mathbf{q}, t, \tau) (\mathbf{u}^1(\mathbf{q}, \tau) - \mathbf{u}^1(\mathbf{x}, t)) dV_{\mathbf{q}} d\tau$$

$$\mathbf{C}^1(\mathbf{x}, \mathbf{q}, t, \tau) = \int_{-\infty}^{\infty} \int_{\mathcal{B}^0} \mathbf{C}^0(\mathbf{x}, \mathbf{p}, t, \sigma) \mathbf{S}^{0,1}(\mathbf{p}, \mathbf{q}, \sigma, \tau) dV_{\mathbf{p}} d\sigma$$



Discussion

- Method accomplishes the following:
 - Two-way coupling between length scales (coarsening + refinement).
 - Forces on higher level DOFs exactly reproduce the original level 0 model.
 - Effects at smaller length scales are incorporated into larger length scales.
- Limitations:
 - Many issues remain regarding how to make the method efficient.
 - Need to re-linearize for evolving damage or other nonlinearities.

SS, A coarsening method for linear peridynamics, Int. J. Multiscale Computation Engineering (to appear).