Sandia
National
Laboratories

Exceptional

service

in the

national

interest

SAND2013- 6505C

Kokkos:
Enabling performance portability
across manycore architectures

H. Carter Edwards and Christian Trott

Extreme Scaling Workshop 2013
August 15, 2013

Boulder, Colorado
SAND2013-#i##

VAL a3

’/*‘:I"‘% U.S. DEPARTMENT OF)
{0'ENERGY @IVAA

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Manycore Performance Portability Challenge ()i
Diversity of devices and associated performance requirements

Device Dependent Memory Access Patterns

= Performance heavily depends upon device specific
requirements for memory placement, blocking, striding, ...

= CPUs with NUMA and vector units

= Core-data affinity: first touch and consistent access
= Alignment for cache-lines and vector units

= GPU Coalesced Access with cache-line alignment

= “Array of Structures” vs. “Structure of Arrays” ?
» This has been the wrong question

Right question: Abstraction for Performance Portability ?

Programming Model Concept) i
Two foundational ideas

= Manycore Device
= Distinct execution and memory spaces (physical or logical)
= Dispatch parallel work to device : computation + data

= Classic Multidimensional Arrays, with a twist
= Map multi-index (i,j,k,...) <> memory location on the device

= Efficient : index computation and memory use
= Map is derived from an array Layout
» Choose Layout for device-specific memory access pattern
= Make layout changes transparent to the user code;
» IF the user code honors the simple API: a(i,j,k,...)

Separate user’s index space from memory layout

Sandia
m National

Laboratories

Kokkos Library (libraries)

= Standard C++ Library, not a Language extension
= |n spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
= Not a language extension: OpenMP, OpenACC, OpenCL, CUDA

= Uses C++ template meta-programming

= Compile-time polymorphism for devices and array layouts
= C++1998 standard; would be nice to require C++2011 ...

= Kokkos is becoming a hierarchy of manycore-tuned libraries
= CORE: Arrays and Parallel Dispatch
= Containers: vector, unordered map, compressed sparse row
= Sparse linear algebra kernels
? Mesh or grid

3

Core : Array Allocation, Access, and Layout

= Allocation and access
View< double * * [3][8] , Device > a(“a”,N,M);
= Dimension [N][M][3][8] ; two runtime, two compile-time
= ali,j,k,1) : access data via multi-index with device-specific map

= ‘View’ APl is the same for both host and device code

= Access checks correctness

= Host ¢ device memory access — catch error before “seg fault”
= Runtime array bounds checking — in debug mode
= Capability on the GPU as well

= View semantics (shared pointer semantics)

Sandia
National
Laboratories

= Multiple view objects reference the same array; a.k.a., shared ownership

= Last view deallocates array data

4

National

Core : Allocation, Access, and Layout L

= Advanced : specify array layout
View<double**[3][8], Layout , Device> a(“a”,N,M);
= Qverride default layout; e.g., force row-major or column-major
» Multi-index access is unchanged in user code
= Layoutis an extension point for blocking, tiling, etc.
= Advanced : specify memory access attributes
View< const double**[3][8], Device, RandomRead > x =a;
= Use special hardware, if available

= E.g., access ‘X’ data through GPU texture cache

= Advanced : integrate aggregate ‘scalar’ types into the layout
= Stochastic variables

= Automatic differentiation variables

5

Core : Deep Copy
NEVER have a hidden, expensive deep-copy

= Deep-copy only when explicitly instructed by user code

= Basic : mirror the layout in Host memory space

» Avoid transpose or permutation of data: simple, fast deep-copy
typedef class View<...,Device> MyViewType ;

MyViewType a(“a”,...);

MyViewType::HostMirror a_host = create_mirror(a);

deep_copy(a, a_host); deep_copy(a_host, a);

= Advanced : avoid unnecessary deep-copy
MyViewType::HostMirror a_host = create_mirror_view(a);
= |f Device uses host memory then ‘a_host’ is simply a view of ‘@’
= deep_copy becomes a no-op

6

Sandia
National
Laboratories

Core : Parallel Dispatch) i
parallel_for(nwork , functor)

= Functor : Function + its calling arguments

template< class DeviceType > // template on device type
struct AXPY {
typedef DeviceType device_type ; // run on this device
void operator()(int iw) const { Y(iw) += A * X(iw); } // shared function
const double A ;
const View<const double*,device_type> X ;
const View< double*,device_type>Y ;
b
parallel_for(nwork , AXPY<device>(a, x, vy)); // parallel dispatch

* Functor is shared and called by NP threads (NP < nwork)
* Thread parallel call to ‘operator()(iw)’ : iw € [0,nwork)
= Access array data with ‘iw’ to avoid race conditions

7

Core : Parallel Dispatch i)
parallel_reduce(nwork , functor, result)

= Similar to parallel_for, with a Reduction Argument
template< class DeviceType >
struct DOT {
typedef DeviceType device_type ;
typedef double value_type ; // reduction value type
void operator()(int iw , value_type & contrib) const
{ contrib += y(iw) * x(iw); } // this thread’s contribution
const View<const double*,device_type> x,y;
// ... to be continued ...

b

parallel_reduce(nwork , DOT<device>(x,y) , result); }

» Value type can be a scalar, ‘struct’, or dynamic array
= Result is a value or View to a value on the device

8

Core : Parallel Dispatch i)
parallel_reduce(nwork , functor, result)

= |nitialize and join threads’ individual contributions
struct DOT{ // ... continued ...
static void init(value_type & contrib) { contrib=0; }
static void join(volatile value_type & contrib,
volatile const value_type & input)
{ contrib = contrib + input ; }
b

= Join threads’ contrib via Functor::join

= ‘volatile’ to prevent compiler from optimizing away the join

= Deterministic result & highly desirable
= Given the same device and # threads
= Aligned memory prevents variations from vectorization

9

Core : Advanced Parallel Dispatch OES
(under development)

template< class DeviceType >
struct MyFunctor {
void operator()(DeviceType dev) const ; // shared function
b
parallel_for(WorkRequest , MyFunctor<device>(...)); // parallel dispatch

= DeviceType abstracts thread hierarchy, shared memory, ...
= OpenMP 4.0 vocabulary: team of threads, league of teams
= Teams work cooperatively using transient team-shared memory
= Teams have synchronization primitives (e.g., barrier)
= E.g., Cuda’s grid-block-thread = league-team-thread hierarchy

= WorkRequest requests league, team, shared memory sizes
= Actual sizes may vary according to device’s capabilities
= E.g., maximum team size limited by NUMA, #cores, #hyperthreads

10

Core : Atomic Operations) i
wrapper around ‘native’ atomic operations

= NOT the C++11 ‘atomic<T>’ functionality and interface

= Fundamental operations on intrinsic data types
= 32 and 64 bit integer and floating point types,
= old_val = atomic_exchange(address, new_val);

= atomic_compare_exchange_strong(address, old_val , new_val);
= If *address == old_val then exchange

= old_val = atomic_fetch_add(address, value);
= old_val = *address ; *address += value ;

= Likely to have non-deterministic results ¢ warning!
= Non-deterministic ordering of atomic operations
= Floating point addition is NOT associative

Core : Devices i) tora

= ‘Threads’ Device : pthreads or C11 threads
* Pool of threads created once and pinned to cores
Hardware detection and core pinning via hardware locality library (hwloc)
Fan-in collective for deterministic reductions
Teams cannot span NUMA regions

= ‘OpenMP’ Device : wrapper on OpenMP
Attempt to pin to cores via hwloc
e Cannot use both ‘Threads’ and ‘OpenMP’ — compete for cores

= ‘Cuda’ Device : wrapper on NVidia’s CUDA 5.0 (or better)
* Currently require Fermi (or better); eventually require Kepler
* Unified Virtual Memory (UVM) capability will define more memory spaces
* Device resident and host accessible
* Host resident and device accessible

12

National

Performance Evaluation) e

= Using Sandia Computing Research Center Testbed Clusters
 Compton: 32nodes
* 2x Intel Xeon E5-2670 (Sandy Bridge), hyperthreading enabled
« 2x Intel Xeon Phi 57core (pre-production)
* 1CC13.1.2, Intel MP1 4.1.1.036
* Shannon: 32nodes
* 2x Intel Xeon E5-2670, hyperthreading disabled
« 2x NVidia K20x
* GCC4.4.5, Cuda 5.5, MVAPICH2 v1.9 with GPU-Direct

= Absolute performance “unit” tests
* Evaluate parallel dispatch/synchronization efficiency
* Evaluate impact of array access patterns and capalities

= Mini-application : Kokkos vs. ‘native’ implementations
* Evaluate cost of portability

13

Performance Test: Modified Gram-Schmidt

Sandia
m National
Laboratories

Simple stress test for bandwidth and reduction efficiency

=

R+W Bandwid

100
80 /

' d

Cd

20
0 -

L d
L d

1E+05

1E+06 1E+07

Double Precision Vector Length (16 vectors)

—+—K20x (with ECC)

—o—Xeon 1thread/core

--- Xeon Phi 56core x
4thread/core

-+4- Xeon Phi 56core x
1thread/core

Intel Xeon: E5-2670 w/HT
Intel Xeon Phi: 57¢ @ 1.1GHx
NVidia K20x

Results presented here are for
pre-production Intel Xeon Phi
co-processors (codenamed
Knights Corner) and pre-
production versions of Intel’s
Xeon Phi software stack.
Performance and configuration
of the co-processors may be
different in final production
releases.

» Simple sequence of vector-reductions and vector-updates
* To orthonormalize 16 vectors
» Performance for vectors > L3 cache size

14

* NVDIA K20x
* Intel Xeon
* Intel Xeon Phi

: 174 GB/sec = ~78% of theoretical peak
78 GB/sec = ~71% of theoretical peak
92 GB/sec = ~46% of achievable peak

Performance Test: Molecular Dynamics)
Lennard Jones force model using atom neighbor list

. Solve Newton’s equations for N particles
. Simple Lennard Jones force model: ;= 0€ [() 2(]
Jr<r Vij i

. Use atom neighbor list to avoid N2 computations
pos_i = pos(i);
for(jj = 0; jj < num neighbors(i); jj++) {
j = neighbors(i,jj);
r ij = pos_ i - pos(j); //random read 3 floats
if (|r_ij| < r_cut)
f i += 6%*e*((s/r_ij)*7 - 2*(s/r_ij)*13)

}
£(i) = £ i;

« Moderately compute bound computational kernel

« On average 77 neighbors with 55 inside of the cutoff radius

15

Performance Test: Molecular Dynamics)
Lennard Jones (LJ) force model using atom neighbor list

« Test Problem (#Atoms = 864k, ~77 neighbors/atom)
o Neighbor list array with correct vs. wrong layout
« Different layout between CPU and GPU
« Random read of neighbor coordinate via GPU texture fetch

180 Intel Xeon: E5-2670 w/HT
160 Intel Xeon Phi: 57¢ @ 1.1GHx
140 M correct layout NVidia K20x
, 120 (with texture)
?OL 100
& 80 “ co_r:‘eCt layout Results presented here are for
60 without texture pre-production Intel Xeon Phi
40 — co-processors (codenamed
= wrong layout ;
20 . Knights Corner) and pre-
(with texture) . . ,
0 production versions of Intel’s
Xeon Xeon Phi K20x Xeon Phi software stac_:k. _
Performance and configuration

o Large loss in performance with wrong layout of the co-processors may be

different in final production
« Even when using GPU texture fetch releases.

16
-

MPI+X Performance Test: MiniFE

Sandia
m National
Laboratories

Conjugate Gradient Solve of a Finite Element Matrix

= Comparing X = Kokkos, OpenMP, Cuda (GPU-direct via MVAPICH2)

= Weak scaling with one MPI process per device
* Except on Xeon: OpenMP requires one process/socket due to NUMA

 8M elements/device

= Kokkos performance
* 90% or better of “native”
* Improvements ongoing

Time 1n sec

12}

[
=)

o0

®—® Xecon - Kokkos
@& -@ Xcon - OpenMP

B—8 Xeon Phi - Kokkos ||
= 1 Xeon Phi - OpenMP H

A—a Kepler - Kokkos
4- -4 Kepler - Cuda

8

|
16 32 64

f Devices

MPI+X Performance: MiniMD

h

Sandia
National
Laboratories

= Comparing X = OpenMPI vs. Kokkos , one MPI process / device
* Using GPU-direct via MVAPICH2; no native Cuda version to compare

= Strong scaling test: 864k atoms, ~77 neighbors/atom

I I
neigh

100
80

Total time 1n node-sec

18

@®—® Xeon - Kokkos

®- -® Xeon - OpenMP
B Xecon Phi - Kokkos
- -l Xeon Phi - OpenMP

— Kepler - Kokkos

| |
16 32

1 2 4 8
of Devices

100
80
60
40
20
0

[a—
o
o

Total time in node-sec

Sandia

Incremental Migration Strategy) tna
For C++ Applications & Libraries

= Replace array allocations with Views (in Host space)
» Specify layout(s) to match existing array layout(s)
* Extract pointers to allocated array data and use them in legacy code

= Replace array access with Views

* Replace legacy array data structure(s) with View
* Access data members via View API

= Replace functions with Functors, run in parallel on Host
e Hard part: finding and extracting your functions’ hidden states
» improve code quality
* Hard part: finding and fixing remaining thread-unsafe (race) conditions
» most easily using atomic operations

Set device to ‘Cuda’ and run on GPU
* Hard part: thread scalability, some functors may require redesign

19

Conclusion) i,
Manycore Performance Portability

= Solved: “array of structs” vs. “struct of arrays” ?
* The right question: what abstractions are required ?
* Answer: multidimensional arrays with device-polymorphic layout
* and coordinated parallel dispatch of computational kernels

= Kokkos C++ core library, not a language extension
* Performance evaluation “unit tests” and mini-applications
* Multicore CPU, NVidia GPU, Intel Xeon Phi coprocessor
* 90% or better of device-specialized “native” implementation

= Plans : First release Sept’13 (next month)
* Enable Trilinos MPI+X through Tpetra
* Researching hierarchical task-data parallelism
* Applications are investigating Kokkos for MPI+X migration

= LAMMPS
= Climate modeling LDRD

20

