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Why	
  Flow	
  Ba<eries?	
  

• Easy	
  scalability	
  
• Long	
  cycle	
  life	
  
• Deep	
  discharge	
  
• Energy	
  (kWh)	
  
and	
  power	
  (kW)	
  
independent	
  
• Decrease	
  costs	
  



Why	
  MetILs?	
  	
  
• 	
  Higher	
  energy	
  density	
  
• 	
  Negligible	
  vapor	
  pressure	
  
• 	
  Non-­‐corrosive	
  
• 	
  Polarizable	
  funcXonal	
  groups	
  

Metal	
  Ionic	
  Liquids	
  (MetILs)	
  



Ion	
  Pairing	
  

Bo<om	
  Line:	
  	
  Strong	
  Ion	
  Pairing	
  Does	
  NOT	
  occur	
  



MetIL–	
  

+MetIL	
  

Anion	
  exchange	
  
membrane	
  

Targets	
  
• 59	
  mV/n	
  separaXon	
  (ideally	
  n	
  >	
  1)	
  
• Viscosity	
  <	
  500	
  cP	
  (pressurizaXon	
  issues!)	
  
• ConducXvity	
  >	
  500	
  mS	
  cm-­‐1	
  	
  
• Open	
  Circuit	
  PotenXal	
  >	
  1.5	
  V	
  

	
  
	
  
	
  
	
  
	
  

Mn2+	
  à	
  Mn4+	
  +	
  2e–	
  

Zn2+	
  +	
  2e–	
  à	
  Zn0	
  (s)	
  

2	
  OTf–	
  (membrane)	
  

MetIL	
  Flow	
  Ba<ery	
  Cell	
  



Higher	
  Energy	
  Density	
  
EXAMPLE	
  ONE:	
  	
  Consider	
  a	
  compound	
  CuL2BF4	
  (L	
  =	
  
methanolamine,	
  MW	
  =	
  47	
  g/mol),	
  measured	
  density	
  1.6	
  g/mL,	
  
formula	
  weight,	
  244	
  g/mol	
  
What	
  is	
  the	
  molarity	
  of	
  redox	
  acXve	
  metal?	
  
Divide	
  density	
  by	
  formula	
  weight	
  (x1000	
  unit	
  conversion)	
  
6.6	
  M	
  redox	
  acXve	
  copper	
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EXAMPLE	
  TWO:	
  	
  What	
  about	
  a	
  liquid	
  MOF	
  (metal-­‐organic	
  
framework)?	
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Costs	
  

Compound	
   $/g	
  
Cu(BF4)2	
   0.88	
  
HBF4	
   1.52	
  
HCF3SO3	
   2.39	
  
V2O5	
   5.04	
  
VOSO4	
   8.67	
  
Cu(CF3SO3)2	
   11.94	
  

How	
  do	
  we	
  get	
  costs	
  below	
  $100/kWh?	
  

Cost	
  ReducXon	
  
• Drop	
  material	
  costs	
  
•  Increase	
  concentra(on	
  of	
  the	
  
redox	
  ac(ve	
  species	
  
•  Increase	
  voltages	
  higher	
  than	
  1.5	
  V	
  
• Mul(-­‐electron	
  reac(ons	
  

Cost	
  Increase	
  
• Pumping	
  higher	
  viscosity	
  fluids	
  



Iron	
  Ionic	
  Liquid	
  (FY10)	
  

Anderson	
  et	
  al,	
  Dalton	
  Trans.	
  2010,	
  8609–8612.	
  

(CF3SO3)3Fe	
  +	
  6	
  NH(CH2CH2OH)2	
  	
  

σ	
  =	
  0.207	
  mS	
  cm-­‐1	
  

µ	
  =	
  4482	
  cP	
  

Δ	
   +3	
  CF3SO3
-­‐	
  

Hydroxyl	
  (	
  	
  	
  )	
  and	
  amine	
  bands	
  
(	
  	
  	
  )	
  of	
  Fe	
  IL	
  are	
  blue	
  shiged	
  
200	
  and	
  30	
  cm-­‐1	
  rela(ve	
  to	
  
diethanolamine.	
  



Viscosity	
  (FY11)	
  
Issue:	
  	
  Ionic	
  liquids	
  are	
  orders	
  of	
  magnitude	
  more	
  viscous	
  than	
  water.	
  

Approach	
  One:	
  	
  Coordina(on	
   Approach	
  Two:	
  	
  Temperature	
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Prah	
  et	
  al,	
  Dalton	
  Trans.	
  2011,	
  DOI:	
  10.1039/C1DT10973A.	
  

Aqueous	
  VRB	
  



ConducXvity	
  (FY11)	
  
Issue:	
  	
  Ionic	
  liquids	
  typically	
  display	
  conduc(vity	
  <5	
  mS	
  cm–1.	
  

Approach	
  One:	
  	
  Cyclic	
  ligands	
   Approach	
  Two:	
  	
  Anions	
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(CF3SO2)2N–	
  
•  Significantly	
  higher	
  conduc(vity	
  
•  Does	
  NOT	
  correlate	
  with	
  viscosity	
  
•  No	
  pronounced	
  temperature	
  
dependence	
  

BF4–	
   CF3SO3
–	
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Electrochemical	
  Reversibility	
  (FY11)	
  

Compound	
   ΔE	


[Cu(DEA)6](OAc)2	
   170	
  mV	
  
[Cu(DEA)6](BF4)2	
   190	
  mV	
  
[Cu(MEA)6](BF4)2	
   120	
  mV	
  
[Cu(DEA)6](NTf2)2	
   250	
  mV	
  
[Fe(MEA)6](BF4)2	
   160	
  mV	
  
[Mn(DEA)6](OTf)2	
   60	
  mV	
  

Several	
  MetILs	
  have	
  electrochemical	
  reversibility	
  beher	
  than	
  ferrocene	
  
(ΔE	
  <	
  300	
  mV)	
  

Increased	
  temperature	
  
improves	
  reversibility.	
  



Cell	
  TesXng	
  (FY11/12)	
  

Mn3+	
  à	
  Mn2+	
  

Cu2+	
  à	
  Cu1+	
  

Cu1+	
  à	
  Cu2+	
  

Mn2+	
  à	
  Mn3+	
  • Tes(ng	
  ac(vity	
  has	
  just	
  
commenced	
  
• Commercial	
  anion	
  
exchange	
  membranes	
  
have	
  been	
  iden(fied	
  
• H-­‐cell	
  and	
  flow	
  tests	
  
will	
  be	
  performed	
  
• Narrow	
  voltage	
  window	
  
(0.6	
  V)	
  suggests	
  new	
  
anolytes	
  need	
  
development	
  

[CoCl4]2–	
  MetIL	
  



Summary/Path	
  Forward	
  (FY12)	
  

•  Low	
  cost	
  ionic	
  liquid	
  energy	
  storage	
  materials	
  based	
  on	
  new	
  
methodology	
  

•  Approximately	
  200	
  combina(ons	
  of	
  metal	
  ca(ons,	
  ligands,	
  
and	
  anions	
  reacted	
  to	
  date	
  

•  Tunable	
  chemical	
  and	
  physical	
  proper(es	
  
•  Cell	
  tes(ng	
  in	
  progress	
  
•  BF4–	
  salts	
  are	
  current	
  focus	
  based	
  on	
  cost	
  of	
  $1/g,	
  low	
  viscosity,	
  reasonable	
  conduc(vity,	
  and	
  Cu(II)/Cu(I)	
  

reversibility	
  

Proton	
  
Couple	
  

Redox	
  
Couple	
  

PotenXal	
  ReacXon	
  Mechanisms	
  



Acknowledgements	
  

Dr.	
  Imre	
  Gyuk	
  
Energy	
  Storage	
  Systems	
  Program	
  Manager	
  

Department	
  of	
  Energy	
  
Office	
  of	
  Electricity	
  Delivery	
  and	
  Energy	
  Reliability	
  	
  

	
  
Technical	
  Team:	
  
Jonathan	
  Leonard,	
  David	
  Ingersoll,	
  Frank	
  Delnick,	
  Nick	
  Hudak,	
  
and	
  Alyssa	
  Rose	
  
Management	
  Team:	
  
Ross	
  Guhromson,	
  Karen	
  Waldrip,	
  Terry	
  Aselage,	
  Jim	
  Voigt	
  &	
  
Tom	
  Wunsch	
  
PNNL	
  Collaborators:	
  
Gary	
  Yang,	
  Wei	
  Wang,	
  and	
  Soowhan	
  Kim	
  
	
  


