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- e | Inspiration for Semiconductor
b Based Quantum Computing

« Demonstration of GaAs qubits has spurred quantum do
semiconductor qubit research (e.g., Petta et al. in 2005)

Petta, Science, 2005 Hanson, Rev. Mod. Phys. 2007
A 1 um

Need

* Isolate singlet triplet system

* Electrically tunable rotations

» Charge sense (fast is desirable)

F11! Sandia National Laboratories




Quantum Circuit (Loqgical

Memor Classical-OQuantum
—o0 ..
~ Interface

C ) S~

Does T, need to be really long?

(p~1 049) X H—{xH—® Master CPU

. _ F—L—0—@
Conclusions from logical

memory Physical Qubit

— Scheduling conflicts lead to
more idles (e.g., electronics
& DD)

— if T, error is non-negligible
gates requirements are
more strict

¥

CMOS Circuits: 1 Logical
De-Seralizer Qubits
Muxes (21 physical)

— Circuit would shows benefit
at p~5x10-+ assuming
negligible idle error

Levy et al. SPAA 2009 U Eﬂ l l U

Levy et al. arXiv:1105.0682 Chip Level Circuit (21 qubits) @Samr National Laboratories




Motivation for Silicon Qubits

29Si concentration, Cy (cm™)
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: H = 1/R" regime (dipolar)  [_"Tneory, B || [100] : electron spin manipulation (spin
i — Theory, B || [111] b read-out)
10 € O Experiment, B || [100] E
Experiment, B || [111] . — UNSW
0 i _
10 § * 1E_}f?F:<e1r[|Jm“?Q;ﬁ3 donors § — UCLA
— 1o a i ~ HRL
w E . .
T E — U. Wisconsin
|_ _2_ 7]
107 ¢ E
of B || [100] ] « Siisotope enrichment removes
107 E nuclear spin, long electron spin
10°F — - T2
contact hyperfine regime =
R T P VY Y Y « Long T, measured and longer
10 10 10 10 10 10 10 predicted possible
ppm
\\l .
. s Witzel et al, PRL 105, 187602 (2010)
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Motivations

"= Enhancement Mode Si Quantum Dots
Al Al Al Al
Jow ot w V< e w ot wl
SiO, SIO,
250 A Nitride
etch stop
Many silicon approaches GaAs design to Si?

SNL looking at enhancement mode Si foundry approach
- start w/ MOS, now incorporating donors or SiGe/sSi

1. Platform is modular design for both donors and SiGe/sSi
2. Tunable parameters (density, valley splitting, g-factor?)
3. Start with MOS:

» well understood material system

« overlapped interests for other Si approaches Petta et al. [2005]

4. CMOS compatible (MOS) ) Sandia National Laboratories




Enhancement mode quantum dot concept

yrda@

Depletion Accumulation
Gates Gate
Accumulation Oxid
(2DEG) xide
Insulator
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Structure provides 3D confinement

SOURCE DOT DRAIN
2.

(111 Sandia National Laboratories




Coulomb blockade

Imbalance in chemical potential produces-current

——
« Equally spaced energy levels related
to charging energy of capacitance
» Periodic current resonances
Current goes through QD when levels lines up produces — "Coulomb blockade
) U+ P N _
LL(N+1)  Low temperatures required (T << 4K)
LL(N) Ig T g
Tr— pw | Lo V=2 C.n~ 16 aF
S wolmmc BB hm sum
— AV =3~ 1mv
| | | | C
E A Eadm ( e /\
= | £ Y N
S 2
S IN-3[| N-2 || N-1 N [{N+1
2
i >

gate voltage Vg

Chemical potential levels are spaced by charging energy \[11) Sandia National Laboratories




Early challenge to MOS QDs

— Mobile lonic

R [ Charge def(_ects&(_effective mass
- - - - 1. Uncertain confinement potential

vvvvvvvvvvvvvvvvv 2. Unintentional dots

AAAAAAAAAAAAAAAAA Treped 3. Fluctuators (TLS)

Charge

Fixed Oxide
5-25A + + + + + + eE == =7 + Ch arge

Sio,

Si

Magnetic defects

1. Non-uniform magnetic field

2. Time varying magnetic field (if not
polarizable)

Sio, : ' \ Disorder &
& 0 993 9 o o & Ideal Barriers unintentional dot

Si qubit — K /Sb (or other donor)
1 - N

- M ECJ \/X
Unintentional dot

c /
\F11] Sandia National Laboratories




Shared Considerations (Donors)

Donor Device Architectures [e.q. Kane]

a) A-Gates
/ J-Gate

i I m— [ — SiO, or

Barrier )
Si SiGe?
«%'p «¥'p
b) c)

[ LT | [eaa+l [444t]  [hddt]  [dat+]

* Understanding MOS interface is a
@ o] @ =i . shared goal for donor
ol 12 : architectures

0.10

» Disorder potential

~ 0.05

xxxxxxxxxx

(A\) renualod ueay wouy uoneinag

T ~ 0.00
oy -9 0 * Interface traps
: oL —-0.05
‘% m P
A o | o  Effect of magnetic defects?
Sﬂ " S 1 el sl UL | 015

Sandia National Laboratories



> I ~Shared Considerations (SiGe/sSt)

MOS QD

Si0, \

"“+?+r§-i 9, o otd

/ qubit — Sb (or other donor)
Si 6/

« MOS interface may provide model

sSi/SiGe Device Architectures system for SiGe/sSi
lonized or « SiGe distances defects further
e % B unionized away... but more defects?!
e Si Cap Layer dopants
® Spacer + Supply * Modulation doping layer is source of
> tr:nedSI L3 U unpaired spins and electrostatic

disorder (similar magnitudes?)
SiGe Buffer

» Valley splitting

(1) Sandia National Laboratories




: . e vy T. Pl
How is device made: “Front-end s

W W W W

SiO, SIO,

alla . . A oy .
Silicon Substrate with 100A or 350A Gate Oxide oo St':g”de

MOS Stack from Si fab

QDs possible with 0.18 Om litho

EDMR for external community

7,500 — 15,000 mobility, high

resistivity substrates
o ; :

* Built-in APD for single ion detection
« W metal for “back-end” donor implant & RTA




Back-end processing

w

V<0

250 A

Nitride etch

stop

GaAs design to Si
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1

« MDL processing

o E-beam lithography
» Poly-Si etch

« EBL for implant window
e 40-100 kV implant
o Strip metal

» Poly-Si reoxidation
» Deposit ALD Al,O,
» Deposit Al gate

« Etchviaholes

» Deposit Al pads

* Forming gas anneal

Single ion detectors
successfully integrated with
polysilicon window

- Process steps & modular drop-in

Sio2
field

n+

ilicur Danlziun

PAlliop Gate: |

ALDAILO;

Gate Oxide -~

Si Substrate

Implant here

i

Sandia National Laboratories




Immediate Challenge: Charge Defects

Qox(A|203) < O
" Qmobile =7

Q. =7
interface :

Q«(SIO,) >0
D,(SI0;) > 0

Si Fab QD Fab
mobility: ~15,000 (cm?V-ist) => ~200
D, : ~10%0 eV-icm? => ~10%2
Qe : ~10% cm2 => ~10%2

Quantified with C-V [G. Ten EyckK]

r11| Sandia National Laboratories




Sandia quantum dot platform

1.2 —n h single period =
ol ) -
U 0.8 —
C?C) 0.6 = —
o 0.4 —
0.2

-1.30 -1.20 -1.10 -1.00

Nordberg et al., PRB (2009)

Charge SenseCu\(e\nt (PA)
W
(0))

Improved processes (test stack):
Mobility: 8,000 (cm?V-1s1) [T ~ 4K]
D, : 2.9 x 1010 eV-icm

Qo :1.1x10% cm=

~ 2 charges per QD (r = 25 nm)

w

(o]
D
o

W
o

Quantum Dot Conductance (nS)

20
33
10
30+
i A A A 0 B b A s AP o o o, 1 O
-14 -13 -12 -11 -10 -09 -08 -0.7
Ve(V)

(1) Sandia National Laboratories



Disorder

RMS fluctuations approach GaAs at 10! cm2

T T T T T T T T T Y T ¥ T T T T T T
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Sandia National Laboratories
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Lithographic dot verification

Source

eDensity [em”-3]

B 35E+17
2.8E+417
2AE17
1.4E417

. TOE+16
3.8E-82

Gate experiment | Model
[aF] [aF]

A 6 6.2

B 3.2 3.3

C 3.3 3.4

D 7.2 7.3

Top 14.6 14.4

Gates &
QD in Si |

* Measured capacitances are consistent with lithographically
formed dots

e Signal is consistent with 3D capacitance estimates for coupling

Stalford et al., IEEE T. Nanotechnology (1) Sandia National Laboratories



|« pohy-Si
depletion
gate

l S substraie !‘ oan

TG =5.0V
T=-0.3V
CP=-1.2V
R=-2.0V

L. Tracy, et al.
APL 2010

Reconfigurable Dot with Gates

LL(A+1)
L Lo
Lun-1)

A Eadﬁ (
N—3AN-2A N-1 A N AN-M
0 B
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w
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b |
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o
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022 \
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o
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Double quantum dot tunneling strength

(L.Tracy) Single triple point Dot coupling
-0.185 ' ——
400} .
-0.190 300} } + ° |
S S j
i 2 200} } L]
-0.195 Y }
100} % }
0,200 oLt ® | |
1.5 -1.0 -0.5
CP (V)

e AE=E_,+2t, atlowestCP,t=0—>C_ =6aF
e Can tune t from < 14 ueV to possibly ~ 150 ueV

 All the basic functionality for the qubit demonstrated. Need few electron S/T

|F11) Sandia National Laboratories



b

Challenges to achieving few electron

Ciop agree with simulation (+/-20%) at 32 electrons

0.4

0.2

5486
Top Metal Gate = 8V Qox/si)=-4x10M cm?, Qox/ald)F0 s

Approach

o Tunnel barrier
— Design of gates as open as possible
— Charge sensing technique

* Modeling: very good for analysis and
qualitative design but not predictive

— Trying to develop predictive deisgn

« Intelligent trial & error
— Each scan ~ 1 day

— Many scans to get tuned-up (large voltage
space)

— Can be order of 60 days to push a sample to
limit & do all checks without success

R. Young

Ec-Efn (meV), T:

SYR6 Barriers, C]=—4)(1011c:m'E

0 0.1 0.2 0.3 0.4 0.5 0.6
Distance (um)



Wider tunnel barrier
Abrupt turn-off.

Last “visible” transition Barrier not

gradually closing

- No additional
transitions over wide
- Vigp SCaN (tunnel

barrier opening).

Top Gate [V]

| | tago [
-5 -4.5 4 -3.5

-4 -3 -2 -1 0 ]
Vertical Plunger [V] Vertical plunger [V]

» Edge of transport through dot observed

o Several possible reasons
— tunnel barrier is gradually turning off (often the case)
— Last electron

e This case is not gradual and no additional transitions are i) sandia National Laboratories
observed over reasonably large V,,, scan -

M. Carroll




Vertical Plunger [V]

710 -5 0 5 10

Charging energy and tunnel barrier probe

=8.5

1-10.5

o-11

-11.5

-12

Drain Voltage [mV]

M. Carroll

No transitions observed at high V4 beyond -
4V on plunger

V4 can be set that all levels in dot can empty

Edge of opening corresponds to line-up of
energy level with Fermi energy

Ideal case, well depth is no greater than
Fermi energy

Largest charging energy approximately equal
to Fermi energy (5-6 meV)

This sample examined up to ~2*Fermi energy
Ctop-meas ~2.6aF (Ctop-sim-Nzl =_ 2.2 aF)
Three measurements suggestive of N=1

— Other groups have used this as a test of N=1

Sandia National Laboratories



|_ast electron iIn MOS?

VG=7V
Wg=-75V
T=025K
(K. Eng & L. Tracy) Wg=-75V, T=0.25K
1.8X10-5 u T g T g T lo ] G (Ql)
7 8 i
/// ’ 6 ] 2.000E-5
/ 1.2x10°+ 4 1 =
top gate ; X f\J E ) 1
a i 1
ca I w ”»“ V e 0 ]
O . 'g 2 1
6.0x10° - M M “ 4 ' 0
: I .
7, pinchers i -8
ool . .U, . . -19
-12 -10 -8 30 -125 -120 -115 -11.0 -105
all pinchers (V) pinchers (V)

e« Common in MOS for Ec to become very large as N is reduced

o This structure is 180 nm with negative top gate bias

Sandia National Laboratories



Top Metal Gate Vag = 3.9V Q(ox/si) = -3.8x10"" cm
I eDensity contours
_ in 2x10'0 em* increments
Q- 0.01 from 2x10™ to 2x10" cm?
-E_—U-O'Dz E S0z 0.9 electrons
= Qy, = 9.0x107 cm2
i Qg = 1.0x10% cm2
D?O.EM : -0.03 Q,, = 2.34x10" cm?
C,=22aF
C.,=02aF
T C,=02aF
-0.06 R ] 02024
B e o cuzosr
. 100 e 39aF
20 T 50 -0.05 €I, = 41 meV
y (nm) 00 x (nm)
D, or Q,, (cm2eV?) or (cm™)
1x101° > 0.04 per QD .
CI modification to TCAD
1x10** - 0.4 per QD
1x10*? - 4 perQD
» Single positive charge at SiO2 interface can strongly localize electron & large binding E
« Last transitions jump in charging energy? Operate in closed shell N>17
' ' ' I
» But electrostatic dot is also predicted to be very small!! (F) Sandi st Lhoraovis

— Similar sizes predicted (~20 nm x 20 nm)



Other considerations: Decoherence near Oxide

SiO, from SNL (2010)
Schenkel et al. APL (2004)

d T,
(nm) (SNL SiOZ)
030+003 25 490 us  99.9594 285;j

Sample Interface  Peak depth (nm) T, (ms) T, (ms)

120 keV  Si/SiO, 50 1542
120 keV  Si—H 50 l6+2  075:0.04 100 520 s
400 keV  Si/Si0, 150 6=l 1.5£0.1
[
00keV  Si—H 150 141 2.1%0.1 LE sy el
« Some potential variationin T,
oxide to oxide but problem persists
- Preliminary result
Sio, » » Resolvable with sufficient B-field
$ 1 and low enough temperature?
é 9 939 & o4
_ o Doubt: decoherence just not well
) qubit — (or other donor)
Si understood
/ - understand problem
- eliminate decoherence

@ Sandia National Laboratories



@ptimal Control & Dynamical Decoupling for idle

Uncontrolled
rotation from O T T
Control ) | D s
Spln bath 1'-1‘5- _.-;:::'-:"_:-T;:::'"-'_“-".""' s
o0 - E|
5 ] c, .2,
H p— O-Z CZ (t) —I— 60_.’13 %':m-‘%_ 1 < DD4OC, &, = 0
ﬁi oo ,f; i . § |-—0D+0C.c; =1
t = P —DD+OC. &, =2
—_ m [r
Wt i __DD4+OC.e =3
O(t) — / C(T)dT e ‘”y | ; ....DD+DI:.&':-4
0 10 ...DD+0C. ¢, =5
o 1 2 3 4 ] B

Passini et al => 1t and 2" order f 099 — 0.9999

(parameter independent)

Grace => DD+OC produces improved
DD or more robust OC Grace et al., arXiv:1105.2358

(i) sandia National Laboratories



X=gate & dynamically corrected gates (DCG)

E=20 MV/m

Ze = Zo(w)-T[7]-Zc(w/2)-T[7]-Z 1 (w)

T

e Hahn-echo works because spin bath of first

half is strongly correlated with second . { ﬂ
- Z-1-Z-1 U

e DCG sometimes leads to different
configurations Z-1-Z-X () Sonde Matona Laboratues



.. - Alternate modes of SNL platrform for increased

= Distance from Surface (Donors & sSi/SiGe)

donor-QD coupling?

Qubit spacing
« sSi/SiGe Enhancement  from dife“t SiGe
Mode Approach T

\

- Push defects away ¢
v I < ; sSior S
sp+©

<—> Sb*
* Donors 100 nm straggle tolerance?
- Long T, at depth & large E,

- How can we couple to donors?

Bishop et al (in preparation)
Sandia National Laboratories




«» « Enhancement Mode SiGe/sSi: High Mobility &
Modular Change to MOS Flow

Al Al Al Al
Jw o fw V0 V<0 w i bwl
Sio, A Sio,
/
t OC OO - 50 nm
. LPCVD
SiGe & relaxed buffer SiGe cap \ Sio,
AN
Reduced
_I: 2nm Cr/300nm Au :l_ temperature
RTA
1500 cycles ALD A2 ; Undoped SiGe Heterostructure
1nm Si cap I
AuSb | o cice barrier | AUS Lu et. al., APL 94, 182102 (2009)
[5°4°9 2| Mobility ~1.6x106 cm2/V/s

15nm Si quantum well

1um SiGe barrier

graded SiGe buffer

Si substrate

r11| Sandia National Laboratories




K -Back to the fab: SiGe/sSi

(a} 25 nm TiN /100 nm W/ 50 nm TiN /20 nm Ti

300 nm HDP oxide /
35 nm SizN, /
+ 15 nm steam oxide

2 nm Si cap layer
95 nm Siy ;Geg 5 barrier layer
15 nm Si quantum well

Sig ;Gey 5 relaxed buffer layer 153 nm Siﬂi?GEﬂj barrier Iaver
Modificati I I —6nm-Sirquantum-welt——
J odITtications:
-l

1. Substrate f’“m ' 313 nm Si ,Ge, 5 buffer layer

2. Gate dielectric 5 somo |

3. Implant & anneals %
e Questions: = ' CMP interface

Siy ,Gey 3 buffer layer

1. Ge/Sidiffusion S 5 6
2. Surface pinning n (10%am)
3. Mobilty

A 100 nm

(1) Sandia National Laboratories




Transport through Si1Ge/sSiI dot

(a) 25 nm TiN /100 nm W/ 50 nm TiN / 20 nm Ti

300 nm HDP oxide /
35 nm SizN, /

15 nm steam oxide
Poly Si |Poly Si
50 nm SigN,

2 nm Si cap layer

-025

LW

-03

95 nm Siy;Ge; 5 barrier layer
15 nm Si quantum well
Siy 7Gey 2 relaxed buffer layer

o i {
0.18 pm
-0.75 -07 -0.65 -06 -0.55 -05 -0.45 -04

R(V)

-0.35

-04
-046 -044 -042 -04 -038 -036 -034 -

R(V)

G (e?)

0.4

10.3

Vgp (MV)

0.2

0.1

* Double top gated quantum dot w/ DUV lithography

» Relatively regular CB observed w/ small charging
energy E‘] Sandia National Laboratories

Lu et al, (in preparation)



LR (V)

tia -1 -0.9 .08 0.7 -06 .05 11

Charge sensing: last transition

lldot(LL,LR) x10 disensor/dUC w10t

LR (V)

=dl -0.9 -0.8 -0.7 -0.6 -05

» Threshold shifts seen in these devices (tested ~5)
* New charge configuration looks different
» Opposite channel used as charge sensor
» Last transition in region of high sensitivity of sensor
- looks like the last electron (111) Sandia National Laboratories



Few electron energetics

Passivated vs SiGe: 0.5 deg tilt, F=5 MV/m 15-

0.16 : : : : : ,

—e— passivated

S 015 ——SiGe

£ 10

— 0.14 g

£ 0.13 il

E U M :

8 .

= 012

=

m :
> 0.11 () -

0

0.1 : : : - :
10 12 14 16 18 20 2
Diameter (nm)

Roughness
Evidence suggests that VS can be big enough

Ge and Ge profile dependence not well understood
Atomistic modeling + CI : looking in to question
Big phase space with E-field & processing e B e

Experimental tools: addition energy, spin filling, 00001 &V, na, and . = 20 meV /.
S/T sensi ng Sandia National Laboratories




Where are things at?

Many Si groups showing single electron control
Reports of coherent oscillations in both donors and SiGe/sSi
— Last year it was spin read-out and T1
— Thisyear... T2* or T2?
GaAs community has shown full control of qubit and are now working on two
Moving fast and it’s exciting
At SNL:

— Experiment and theory are geared at trying to understand device physics and what is
needed for logical qubits

« MOS DQD : jury is still out, lots of learning, good for donor technology
o SiGe/sSi DQD : looks promising, perhaps less risk
» Donors : really hard fab, big pay-off potential
— Foundry fab:
 |earning on several paths

» Extra devices: hand-shake with those interested in using foundry devices (joint
learning!)
(111) Sandia National Laboratories



LR (V)

29 concentration, Cy (cm™)

10" 10" 10" 10 107 10%
10% I E
E H == 1/R” regime (dipolar)  [__"Tneory, B || [100]
i — Theory, B||[111]

o Experiment, B || [100]
Experiment, B || [111] ]
% Experiment, -
1.210"/cm® donors E

10 E contact hyperfine regime
10
10’ 10" 10 10° 10* 10° 10
ppm
disensor/dUC
-0.5 =

-0.6

-0.7

=1 =i, -0.9 -0.8 -0.7
LL (V)

-0.5

2.5

11.5

0.5

Summary

CP="1V

Top Gate

\

G (@Y
6.080E-"

-2.000E-| Si Handle Poly-silicon Depletion Gate

-0.04 -0.02

EP (V)

Lateral, QD platform demonstrated

-  Low )damage for MOS (Q; ~ 10!t cm?, D;, ~ 109 cm2 eV-1, mobility ~
8000
— 150,000 mobility for SiGe/sSi

Double quantum dot,charge sensing low electron number
—  Last electron charge sensed

Decoherence times can be long in Si
— Relationship to impurities and enrichment well understood
— DD, DCG and OC show promise to reach logical circuit requirements

Lots still to do:
—  Few electron charge sensed DQD (S/T)
—  Si QD physics (e.g., valleys)

Sandia National Laboratories
—  Decoherence near oxide/Si interface??
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- Disorder and ideal behavior

o
-0.2

-0.4

-0k

_DB '-9.5

-1 10

Werical [W]

-1.2

1-10.5
-1.4

-11
Vigp=-0.1 18

-1.8

ow band diagram model of disorder -2

-11.5

3 25 2 15 - 05 e

Left Plunger [W]

Top gate capacitance measured to be ~27 aF in 35 nm SiO, structure (R ~ 90 nm)

Threshold of dot region ~ 1.4V

Very simplistic estimates with depletion from gates & C,cacured: Neiec < 10 electrons

Number of electrons is ambiguous because of uncertainties in values like Vy, and C(V)
- Charge sensing will be important to verify electron number

(1) sandia National Laboratories
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