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Inspiration for Semiconductor 
Based Quantum Computing

• Demonstration of GaAs qubits has spurred quantum do 
semiconductor qubit research (e.g., Petta et al. in 2005) 

Hanson, Rev. Mod. Phys. 2007Petta, Science, 2005

Need 
• Isolate singlet triplet system
• Electrically tunable rotations
• Charge sense (fast is desirable) 



Quantum Circuit (Logical 
Memory) Classical-Quantum 

Interface

Chip Level Circuit (21 qubits)

• Does T2 need to be really long? 
(p~10-4 ?)

• Conclusions from logical 
memory
– Scheduling conflicts lead to 

more idles (e.g., electronics 
& DD)

– if T2 error is non-negligible 
gates requirements are 
more strict

– Circuit would shows benefit 
at p~5x10-4 assuming 
negligible idle error

Physical Qubit

Levy et al. SPAA 2009
Levy et al. arXiv:1105.0682 



• Recent device progress in 
electron spin manipulation (spin 
read-out) 

– UNSW
– UCLA
– HRL 
– U. Wisconsin 

• Si isotope enrichment removes 
nuclear spin, long electron spin 
T2

• Long T2 measured and longer 
predicted possible 

Motivation for Silicon Qubits
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Witzel et al, PRL 105, 187602 (2010)



Enhancement Mode Si Quantum Dots

Al Al Al Al

SiO2 SiO2

1000Å poly-Si 1000Å poly-Si

W W W W

250 Å Nitride 
etch stop

Al

n+ n+

V>0 V<0

• Many silicon approaches
• SNL looking at enhancement mode Si foundry approach

- start w/ MOS, now incorporating donors or SiGe/sSi

Motivations
1. Platform is modular design for both donors and SiGe/sSi
2. Tunable parameters (density, valley splitting, g-factor?)
3. Start with MOS:

• well understood material system
• overlapped interests for other Si approaches

4. CMOS compatible (MOS) 

GaAs design to Si?

Petta et al. [2005]
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Enhancement mode quantum dot concept

• Structure provides 3D confinement



Coulomb blockade

• Equally spaced energy levels related 
to charging energy of capacitance

• Periodic current resonances 
produces – “Coulomb blockade” 

• Low temperatures required (T << 4K)

e

Csum ~ 16 aF

~ 1 mV

C
qV =

C
qV =∆

Imbalance in chemical potential produces current

Current goes through QD when levels lines up

Chemical potential levels are spaced by charging energy



Early challenge to MOS QDs

Charge defects & effective mass
1. Uncertain confinement potential
2. Unintentional dots
3. Fluctuators (TLS)

Magnetic defects
1. Non-uniform magnetic field 
2. Time varying magnetic field (if not 

polarizable)

Ideal Barriers
Disorder & 

unintentional dot

Ec Ec

Unintentional dot



Shared Considerations (Donors)

• Understanding MOS interface is a 
shared goal for donor 
architectures

• Disorder potential

• Interface traps

• Effect of magnetic defects?

Donor Device Architectures [e.g. Kane]

SiO2 or
SiGe?
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Shared Considerations (SiGe/sSi)

++ + + ++

Ionized or 
unionized 
dopants

sSi/SiGe Device Architectures

MOS QD 

• MOS interface may provide model 
system for SiGe/sSi  

• SiGe distances defects further 
away… but more defects?!

• Modulation doping layer is source of 
unpaired spins and electrostatic 
disorder (similar magnitudes?)

• Valley splitting

e

Qubit layer



How is device made: “Front-end” T. Pluym

SiO2 SiO2

Silicon Substrate with 100Å or 350Å Gate Oxide

1000Å poly-Si 1000Å poly-Si

W W W W

250 Å Nitride 
etch stop

n+ n+

• Built-in APD for single ion detection  
• W metal for “back-end” donor implant & RTA

MOS Stack from Si fab
QDs possible with 0.18 m litho
EDMR for external community
7,500 – 15,000 mobility, high 
resistivity substrates



Back-end processing

GaAs design to Si

Al Al Al Al

SiO2 SiO2
1000Å poly-Si 1000Å poly-Si

W W W W

250 Å 
Nitride etch 
stop

Al

p

V>0 V<0

1 2 3 4
n+ n+

1 2 3 4

Micro-fab facility 
E-beam lithography
Poly-silicon etch
Aluminum oxide
Top Al gate

T. Pluym, B. Silva, J. Dominguez, N. Bishop, K. Childs

Low parasitic RF die



Process steps & modular drop-in

n+

SiO2
field

SiO2 gate oxide n+

poly-Si
• MDL processing
• E-beam lithography
• Poly-Si etch
• EBL for implant window
• 40-100 kV implant
• Strip metal
• Poly-Si reoxidation
• Deposit ALD Al2O3
• Deposit Al gate
• Etch via holes
• Deposit Al pads
• Forming gas anneal

Single ion detectors 
successfully integrated with 
polysilicon window

Implant here



Immediate Challenge: Charge Defects

500 nm

Al
Al2O3

c-Si

poly po
lySiO2

Qox(Al2O3) < 0
Qmobile = ?

Qf(SiO2) > 0

Dit(SiO2) > 0

Qinterface = ?

mobility:   ~15,000 (cm2V-1s-1)   =>   ~200 
Dit :          ~1010 eV-1cm-2 =>   ~1012

Qeff :         ~1011 cm-2                         =>   ~1012

Quantified with C-V [G. Ten Eyck]

Si Fab QD Fab



D:  -0.8V
F:  -2.3V
H:  -0.9V 
Top: 5V

Source Drain

Sandia quantum dot platform 

Nordberg et al., PRB (2009)

Improved processes (test stack):
Mobility: 8,000 (cm2V-1s-1) [T ~ 4K] 
Dit : 2.9 x 1010 eV-1cm-2

Qox : 1.1 x 1011 cm-2

~ 2 charges per QD (r = 25 nm)

single period
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Disorder
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1010 cm-2

1012 cm-2

1011 cm-2

Σ = 0 cm-2

RMS fluctuations approach GaAs at 1011 cm-2

538 (illustrative device)
Vtop=2.7V
Vright=2V



Lithographic dot verification

• Measured capacitances are consistent with lithographically 
formed dots

• Signal is consistent with 3D capacitance estimates for coupling

Stalford et al., IEEE T. Nanotechnology

A: -0.9V
B: -0.5V
D: -2.1V
E: Ground
Top: 5V

Source Drain

+1V

G
ro

un
d

Ground

Gate experiment
[aF]

Model
[aF]

A 6 6.2

B 3.2 3.3

C 3.3 3.4

D 7.2 7.3

Top 14.6 14.4



Reconfigurable Dot with Gates 

L. Tracy, et al. 
APL 2010

TG = 5.0V
T = -0.3V
CP = -1.2V
R = -2.0V
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Double quantum dot tunneling strength
(L.Tracy)
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All the basic functionality for the qubit demonstrated.  Need few electron S/T

-1.5 -1.0 -0.5
0

100

200

300

400

 

 

∆E
 (µ

eV
)

CP (V)

∆E = Ecm + 2t, at lowest CP, t = 0 → Cm = 6 aF

Can tune t from < 14 ueV to possibly ~ 150 ueV



Challenges to achieving few electron

Approach
• Tunnel barrier

– Design of gates as open as possible
– Charge sensing technique

• Modeling: very good for analysis and 
qualitative design but not predictive

– Trying to develop predictive deisgn

• Intelligent trial & error
– Each scan ~ 1 day
– Many scans to get tuned-up (large voltage 

space)
– Can be order of 60 days to push a sample to 

limit & do all checks without success

Challenge: More negative bias to reduce Nelectron 
ALSO results in wider tunnel barriers

Ctop agree with simulation (+/-20%) at 32 electrons

R. Young



Wider tunnel barrier

• Edge of transport through dot observed
• Several possible reasons

– tunnel barrier is gradually turning off (often the case)
– Last electron

• This case is not gradual and no additional transitions are 
observed over reasonably large Vtop scan

To
p 

G
at

e 
[V

]

Vertical Plunger [V]

Vds = 0.5 mV
Vtop = 4V
T ~ 4K

Vertical plunger [V]

-5.5V

0V
2V 2V

0V

0V 0V

M. Carroll
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No additional 
transitions over wide 
Vtop scan  (tunnel 
barrier opening).

Last “visible” transition
Abrupt turn-off.  
Barrier not 
gradually closing



Charging energy and tunnel barrier probe

• No transitions observed at high Vsd beyond -
4V on plunger

• Vsd can be set that all levels in dot can empty
• Edge of opening corresponds to line-up of 

energy level with Fermi energy
• Ideal case, well depth is no greater than 

Fermi energy 
• Largest charging energy approximately equal 

to Fermi energy (5-6 meV)
• This sample examined up to ~2*Fermi energy
• Ctop-meas ~ 2.6 aF (Ctop-sim-N=1 = 2.2 aF)
• Three measurements suggestive of N=1

– Other groups have used this as a test of N=1
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Drain Voltage [mV]

M. Carroll

Vd

εFermi

εFermi

Ec ~ εFermi

Ec



Last electron in MOS?
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• Common in MOS for Ec to become very large as N is reduced

• This structure is 180 nm with negative top gate bias



Last electron modeling

• Single positive charge at SiO2 interface can strongly localize electron & large binding E
• Last transitions jump in charging energy?  Operate in closed shell N>1?
• But electrostatic dot is also predicted to be very small!!

– Similar sizes predicted (~20 nm x 20 nm)

Dit or Qox (cm-2eV-1) or (cm-2) 
1x1010 →   0.04 per QD
1x1011 →   0.4 per QD
1x1012 →   4 per QD

CI modification to TCAD



Schenkel et al. APL (2004)

Other considerations: Decoherence near Oxide 

• T2 not as long as bulk

• Some potential variation in T2
oxide to oxide but problem persists

- Preliminary result

• Resolvable with sufficient B-field 
and low enough temperature?

Doubt: decoherence just not well 
understood

- understand problem
- eliminate decoherence

T2
(SNL SiO2)

490 µs

d 
(nm)
25

SiO2 from SNL (2010)

520 µs100
99.95% 28Si



Optimal Control & Dynamical Decoupling for idle

Passini et al => 1st and 2nd order 
(parameter independent)

Grace => DD+OC produces improved 
DD or more robust OC

Control

Uncontrolled 
rotation from 
spin bath

Grace et al., arXiv:1105.2358



X-gate & dynamically corrected gates (DCG)

• Hahn-echo works because spin bath of first 
half is strongly correlated with second 
– Z-I-Z-I

• DCG sometimes leads to different 
configurations Z-I-Z-X

E=20 MV/m



Alternate modes of SNL platrform for increased 
Distance from Surface (Donors & sSi/SiGe)

• sSi/SiGe Enhancement 
Mode Approach
- Push defects away

• Donors
- Long T2 at depth & large Evs

- How can we couple to donors?  

e- sSi or Si  

SiGe

e-
Sb+

100 nm straggle tolerance?

x

donor-QD coupling?Qubit spacing 
from defect

Sb+

Sb Sb
QD well

???

Bishop et al (in preparation)



Lu et. al., APL 94, 182102 (2009)

Undoped SiGe Heterostructure

Mobility ~1.6x106 cm2/Vs

Enhancement Mode SiGe/sSi: High Mobility & 
Modular Change to MOS Flow

Al Al Al Al

SiO2 SiO2
1000Å poly-Si 1000Å poly-Si

W W W W

Al

V>0 V<0

1 2 3 4
n+ n+

SiGe cap Strained silicon well (sSi)SiGe & relaxed buffer

50 nm 
LPCVD 
SiO2

Reduced 
temperature 
RTA



Back to the fab: SiGe/sSi

• Modifications:
1. Substrate
2. Gate dielectric
3. Implant & anneals

• Questions:
1. Ge/Si diffusion
2. Surface pinning
3. Mobilty



Transport through SiGe/sSi dot

Lu et al, (in preparation)• Double top gated quantum dot w/ DUV lithography
• Relatively regular CB observed w/ small charging 

energy

I
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W=35V
H=-0.4V
UR=2V
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UL=2V

I

Charge sensing: last transition

• Threshold shifts seen in these devices (tested ~5)
• New charge configuration looks different
• Opposite channel used as charge sensor 
• Last transition in region of high sensitivity of sensor

- looks like the last electron



Few electron energetics

• Evidence suggests that VS can be big enough
• Ge and Ge profile dependence not well understood
• Atomistic modeling + CI : looking in to question
• Big phase space with  E-field & processing
• Experimental tools: addition energy, spin filling, 

S/T sensing

Roughness



Where are things at?
• Many Si groups showing single electron control 
• Reports of coherent oscillations in both donors and SiGe/sSi

– Last year it was spin read-out and T1
– This year… T2* or T2?

• GaAs community has shown full control of qubit and are now working on two
• Moving fast and it’s exciting
• At SNL:

– Experiment and theory are geared at trying to understand device physics and what is 
needed for logical qubits

• MOS DQD :  jury is still out, lots of learning, good for donor technology
• SiGe/sSi DQD : looks promising, perhaps less risk
• Donors : really hard fab, big pay-off potential

– Foundry fab:
• learning on several paths
• Extra devices: hand-shake with those interested in using foundry devices (joint 

learning!)
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Summary

• Lateral, QD platform demonstrated
– Low damage for MOS (Qf ~ 1011 cm-2 , Dit ~ 1010 cm-2 eV-1, mobility ~ 

8000)
– 150,000 mobility for SiGe/sSi

• Double quantum dot,charge sensing low electron number
– Last electron charge sensed

• Decoherence times can be long in Si
– Relationship to impurities and enrichment well understood
– DD , DCG and OC show promise to reach logical circuit requirements

• Lots still to do:
– Few electron charge sensed DQD (S/T)
– Si QD physics (e.g., valleys)
– Decoherence near oxide/Si interface??  
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Disorder and ideal behavior
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• Top gate capacitance measured to be ~27 aF in 35 nm SiO2 structure (R ~ 90 nm)
• Threshold of dot region ~ 1.4V
• Very simplistic estimates with depletion from gates & Cmeasured: Nelec < 10 electrons
• Number of electrons is ambiguous because of uncertainties in values like Vth and C(V) 

- Charge sensing will be important to verify electron number

ow band diagram model of disorder
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