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Overview

High pressure gas reservoirs are 304L stainless
steel vessels that contain hydrogen isotopes at
high pressure. Reservoirs are required to have
yield strengths in a tight range (55-75 ksi) to
inhibit embrittlement.

It can take 5 years to design and validate a
forging process that meets Sandia’s
specifications

Recent reservoir forging designs have
experienced large amounts of recrystallization,
resulting in inadequate material strength.

In order to better predict material properties of
forged components, work is being done to model
the effects of recrystallization on the material
strength and properties of the final forged
product.

Sandia National Laboratories




The modeling challenge is to predict the evolving state of a
reservoir through its entire life cycle

Failure _ Forging
Weldlng

Transition from crack
initiation to reservoir
failure is not well
characterized.

Heat affected zone
of welded joint is

Predictive uncertainties prime location for
Crack Initiation result in large safety cracking.
and Growth factors, reduced lifetimes, Residual |
and increased costs. Stresses
Margin/Uncertainty = Tritium/Helium
Reservoir Design Life Diffusion
Reservoir Design Guide Material Hardening Diffusion is material,
assures sufficient margin -> Embrittlement pressure, and temperature
\ based on predictive dependent.
= uncertainties.
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Outline

* Overview of the forging process
* Recrystallization
« Constitutive model
 Model performance
— OFHC copper
— Stainless steel 304L (wedge and U-cup forgings)
e Summary

U-Cup Forging Simulation Results
Final Strength
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Each forging stage involves multiple processes

Heating in furnace
(~1 hour)

Conduction to die before compression (~3
to 5 sec)

Plastic Strain

=

Conduction to die befre removal Transfer to quench bath

Compression (~0.01 (~5t0 60 sec) (~3to 5 sec)
sec)
\ _ _
Z \ Pictures courtesy of Bonnie Antoun
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Material properties for reservoirs
are determined by the multi-stage forging process

Annealing (1750F to 1800F)

First stage Second stage Final stage
1800° F 1700° F 1600° F
- For now, we are modeling the final stage, e
assuming the annealing removes ]
dislocation structure from previous stages 3 // Rae

* Requires a material model with temperaturef | ==\
and rate dependence ’
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Recrystallization
* During deformation, subgrains form. At high temperatures, some will grow at
the expense of their neighbors, forming the nuclei of new grains.
* Recrystallization is the process by which the dislocation structure in a worked
material is wiped away by growth of nuclei that form a new, relatively
dislocation-free set of grains
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Recrystallization

Dynamic recrystallization Static recrystallization

Occurs if deform at elevated temperature at high strain rate

025 % C steel
8= 1100 °C

Or if deform at low temperatures, then heat
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EMMI Elasto-Viscoplasticity Model
(simplified for uniaxial, isothermal loading)

c = true stress, g =true strain, 6 =temperature

Kk = isotropic hardening variable representing the density of statistically stored

dislocations
K =C, bp(0)y P

Hypoelasticity o = E (8 — 5 p)

o
k+Y(0)

Statistically stored - -p - p
dislocations K = H (9) ‘5 ‘ — Rd (6)/("8 ‘

The flow rule can be inverted to solve for the rate- and temperature-dependent yield
stress

Flowrulefor  ~p _ f(g) sSinh

plastic strain
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EMMI Elasto-Viscoplasticity Model
(for uniaxial loading)

The model tracks multiple cycles of recrystallization simultaneously, as well as the
state variables corresponding to each volume fraction

The energy drop that occurs as recrystallization nuclei grow is the driving force for
recrystallization. The mobility of nuclei boundaries increases with misorientation

angle.
Recrystallized volume X - R (Q)Q (K’ éf ) (X X )
fraction i+1 " ‘rex rex 17921 g 17 7Y+l
Isotropic hardening . . p Xi
. Ky v =|\H-Ryxy « )I€"|—Ky
variable i~ il i~ N4l i~ WX
i i+1
Misorientation variable é’ — hé’l—l/r ép‘ _ é’ Xi
Xi_Xi+1 Xi_Xi+1 Xi_xi+l X _ X
i i+1
Misorientation variable is based on Kok & Beaudion (2002)
X1-X;
\ For now, we are neglecting static recovery f e




Validation for Static/Dynamic
Recrystallization Modeling

« 16 parameters were fit to copper data (Tanner et al.) using a modified
version of Bfit (code by Lathrop)
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« Then, predictions of compress/hold/compress experiments were made
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Wedge Forgings for Validation

Two wedge geometries were forged by the HERF (High Energy Rate

Forging) process
Three initial temperatures (1500F, 1600F, and 1700F)

Tensile specimens were machined and tested to get quasistatic, room-
temperature yield strength in six locations
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304L Parameter Optimization

Single-stage compression (stress-strain data)

Rates

0.1/s

Data from B. Antoun
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Wedge Assumptions

— Conduction, convection, heat generation, and radiation are modeled
— Tightly coupled thermal-mechanical solution
— Dimension variation from sample to sample has negligible effect

— Transfer times to die and to quench bath were based on measurements taken by
Bonnie Antoun for other forgings at PMP (Precision Metal Products)

— Since die is flat, we assume 0.5 to 2s to remove ingot from die

Heating due to
Initial Temperatures Conduction Plastic Dissipation Conduction before transferred to quench bath

T'ime = 5.000000 Time = 5.004200 Time = 10.011000 T'ime = 20.000000

Time to transfer to
quench bath (s)

|
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Coupled Thermal-Mechanical Simulations

* Final strength can be influenced by many factors:
— Initial ingot, punch, and die temperatures
— Times (between furnace to compression, time before quenching, etc)
— Velocity
— Dimensions
— Lubrication

« For uncertainty quantification, we reduce the number of parameters through
engineering judgement and sensitivity analysis

Post-Forged Yield Strength - Post-Forged Yield Strength -
Effect of Temperature Effect of Temperature
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Sensitivity analysis
« Goals

— To determine the most important input parameters to your model

— To reduce the number of parameters that you need to be concerned with in
performing uncertainty quantification

 Methods
— Vary one input parameter at a time to see impact on response

— Generate ensembles of simulations in which the input parameters are varied
over specified ranges

Sensitivities of response to various inputs
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Short Wedge Forging

» Plastic strain increases from left to right
« |Initially, yield stress increases with plastic strain due to work hardening

» As recrystallization develops, yield strength drops in regions with highest
strain levels

Time = 15.41250

Time = 8.01250 Time = 8.60625

Yield (ksi)

F‘

Yield (ksi)
90
80
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Short Wedge Forging

 Experimental values depicted by “x” symbols

« Simulations represented by error bars to account for the uncertainty in
the predicted values based on simulations of upper and lower bound
conditions for each nominal case

Short Wedge
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Error bars indicate range
10 + predicted by simulations
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Tall Wedge Forging

Uncertainty is highest at higher temperature in locations of higher strains
— Due to high rate of recrystallization

Yield Strength (ksi)
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Tall Wedge Forging

* Uncertainty is highest at higher temperature in locations of higher strains
— Due to high rate of recrystallization

Tall Wedge
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Checking mesh and timestep convergence
for wedge simulations

« Solution verification
— Spacial and temporal convergence study
* Three meshes, uniform refinement
* Three timesteps, successive time scales halved
— Solution does not seem to be mesh convergent

Mesh convergence Time step convergence
4.50E+08 4.50E+08
4.00E+08 - 400E+08 — :
_ 3.50E+08 - _ 3.50E+08 ﬁ\
_E 3.00E+08 E 3.00E+08 -4/
B 2506408 e m—— & 250608 —lrze |
% 2.00E+08 b= rneditim g 2.00E+08 —fe=medium |
E 1.50E+08 i i E 1.50E+08 i s |
= 1.00E+08 —o—fine = 1.00E+08 o—very small |_
5.00E+07 5.00E+07
0.00E+00 . . . . . 0.00E+00
A B C D E F A B C D E F
Specimen Location Specimen Location
A
AaAsc F) Sandia National Laboratories




Mesh Convergence Study

« Sierra/SM EXxplicit results are very consistent from one mesh to another
 LS-Dyna converges to the Sierra/SM Explicit solution

« Sierra/SM Implicit diverges (analysis used early contact algorithm still in
development)

Mesh
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Plastic Strain Evolution During Forging

Contour Scale

2.000e+00
1.500e+00
1.000e+00

5.000e-01
0.000e+00
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U-Cup Simulations

 Coupled thermal-mechanical simulations
— Flattening stage is modeled first

— Top is constrained in radial direction by a die to avoid expansion beyond diameter of
final die

— Output is remeshed for final forging simulation
— For the final forging stage, convection, radiation, and conduction are modeled

Time = 7.63651 Time = 13.13651 Time = 17.28926

Time = 0.00000 Time = 7.41862 Time = 7.42757 Time = 7.62756

/

tempF
1.850e+03
1.775e+03
1.700e+03
1.625e+03
1.550e+03
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U-Cup Assumptions

— Dimension variation from sample to sample has negligible effect

— Partial anneal before final stage is assumed to remove all effects from prior
temperature/deformation history

— Epistemic uncertainty of 0.5 to 5.5s to remove ingot from die

— Modified corner geometry (used to help with contact) does not impact final
strengths at key locations

U-Cup Forging Simulation Results

Final Strength
90.0
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40.0

2" Flattening
1650 F forging
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Yield Stress (ksi)
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Ucup Forging

e Uncertainty largest in high-strain location
— Due to high rate of recrystallization

Vertical Tensile Bar Yield for U-Cup Forging

Simulations compared to experimental results in two locations

— Vertical tensile specimens cut in sidewall
— Horizontal tensile specimens cut under punch

U-Cup Forging Simulation Results
Final Strength
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Horizontal Tensile Bar Yield for U-Cup Forging
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Mesh convergence achieved
with Sierra/SM Explicit

Sierra/SM Explicit prediction

eqps eqps eqps eqps
0.75 0.75 0.75 0.75
IO.S |0.5 IO.S IO.S
.0.25 i0.25 .0.25 .0.25
0 0 0 0
Mesh: x1 Mesh: x2 Mesh: x4 Mesh: x8
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Initial Temp: 1650°F Initial Temp: 1650°F Initial Temp: 1650°F Initial Temp: 1650°F
Adiabatic heating Adiabatic heating Adiabatic heating Adiabatic heating

Presto-only run Presto-only run Presto-only run Presto-only run

Sierra/TFA — Sierra/SM Implicit prediction

Solutions using refined
; __jeq*_“-‘;* meshes were not
000e+00 . . .
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5.000e-01 Implicit-Sierra/TFA due
2.500e-01 ) .
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to converge)

0.000e+00

!|1 Sandia National Laboratories




Initial temperatures right before forging
in Sierra/SM (Implicit) — Sierra/TFA

l ' Temp_F l
1650 1650
‘ 1550 ! \ 1638 !

ASC

Temperature states in Sierra/SM
(Implicit and Explicit)

Initial temperature before forging is different, since Sierra/SM Explicit runs
neglect the effects of die chill

Previous sensitivity studies showed that die chill played a minimal role in
determining the final strength

Temperatures right
after forging in
Sierra/SM Explicit

Temp (F)
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Temperatures right after
forging in Sierra/SM
(Implicit) — Sierra/TFA

Temp_F
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Mesh: x4
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Initial Temp: 1650°F
Adiabatic heating
Presto-only run
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Sierra/SM Explicit Results

eqps
* Ucup final strengths look much better using
. _ . 105
Sierra/SM Explicit strains =
0
« When Sierra/TFA — Sierra/SM Explicit coupling is
. . = Adiabatic heating
functional, these will be rerun to increase accuracy
S Here, the error bars also include an
Uncertainties in times for each uncertainty in forging temperature of
portion of ingot history +/- 25 degrees Fahrenheit
Quasi Static Yield Strength as a Function of Forging Temperature Quasi Static Yield Strength as a Function of Forging Temperature
(Horizontal Direction) (Horizontal Direction)
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Sierra/SM Explicit Wedge Results

 Wedge results also differ by using Sierra/SM Explicit

« When Sierra/TFA — Sierra/SM Explicit coupling is
functional, these will be rerun to increase accuracy

Yield Strength (ksi)
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True Stress (psi)
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Summary

Project is a good example of tight integration between P&EM, V&V,
IC, C6, and DSW

A constitutive model for recrystallization has been presented

It is shown to predict both static and dynamic recrystallization with
fairly good accuracy over a range of temperatures and strain rates

Simulations need to be rerun with recent fixes to implicit contact

Sierra/TFA — Sierra/SM Explicit for will be used for thermal-
mechanical simulations with contact once it is functional until new
contact formulation is completed in Sierra/SM Implicit

Termp (F)
77

a5
True Strain
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