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Engineering of solar illumination (light) and thermal
gain (heat) can greatly improve energy efficiency

as

This graph shows the
energy distribution of
sunlight as a function
of wavelength

Goal:

Decouple light (visible)
and IR (heat gain) via
smart management of
optical vs. thermal gain
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hat if we could make a window coating that

,'},W

changes reflective behavior with temperature?
On cold days

the window
transmits light
(visible) and IR
(heat)

On hot days
the window
transmits light
(visible) only
(no IR)
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'; ;; ' VO, demonstrates a significant structural change

' from monoclinic (M1) to tetragonal (rutile) at ~68°C

Monoclinic (M1) VO, Tetragonal

(Rutile)
VO, phase

Major change
In electronic
ML futile structure with
x phase change
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Intrinsic structural/electronic phase change of VO,
has categorized it as a Metal-Insulator-Transition
(MIT) Material

1065 1 M 1 M ) M VOZ I
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* Large area of research decades ago
— optical shutters, switches
* More recently — “smart windows”
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VO, refractive index n* = (n + ik) varies widely
across monoclinic to tetragonal phase transition

:;,

Monoclinic (M1) VO, Tetragonal (Rutile) VO,
e @ 21°C, k™~ 0, IR transparent e @ 79°C, k > n, IR metallic
j 21°C u 79°C (T, + 15°)
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Forming tetragonal VO, is tricky due to the
large number of possible VO, compounds
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' VO, is a line compound

Vanadium may has five

l | |
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common

valence states (0, +2, +3, +4, +5)

| We want Neighboring compounds have
& to be here undesirable electrical
o1 properties:
- YOh Y « V.0 - insulator
L * V,0,,,—no phase
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In ?’nﬁenvironment....
N

acetone N

pyridine

V-oxyisopropoxide

water High
rpm
mixing

Monodisperse
sub-micron
spherical
Vanadium [&. (')
Oxide
Precursor

How can we synthesize tetragonal VO,
at low temperatures with controlled pO,?

Tortured path to VO, formation

}
150°C, 1hr, ai Q&

)
300°C, 1hr/@

A J

(VOP)
particles

/,,,!l S. Yamamoto, et al. (2009) Chem. Mater. 21 198-200.
i v

Lu, et al. (2011) J. Mat. Chem. 21 14776. E'
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el
| %portant observation. Monodisperse VOP

particles must be collected rapidly after synthesis

SW1-12 — Collected after 3 hrs aging SW1-15 — Collected after 20 hrs aging

* Particles were opaque suspension, * Recrystallization with particle sedimentation
but were recovered easily.
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In-situ XRD analysis for VO, phase evolution

; ﬂve monitored VOP using high temperature

Scintag PAD X diffractometer w/
Buehler HTK-1600 hot-stage

A 4

optional
O, getter

of temperatures

* Temperature calibration performed using ThEx standards
* pO, monitor calibrated using certified mixed gases

Gas flow
control |«
(mixing) UHPN,  N,/500 ppm O,
(or Helium)
po_z
monitor
Computer control * VOP powder films dispersed on silicon substrates

and XRD scans
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First scan series employing gettered-Helium
(< 1ppm O,) revealed only V,0, formation.

Onset of V,04

crystallization

~460°C Proof that we can be low
enough in pO, to get V,0,
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Scan series employing N,/~500 ppm O,
revealed many phases as a function of temperature.

Dial back pO,

V,05 melting
~640°C
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Vo, (8 VO, (T)

forms at
forms at ~380°C
~360°C

intermediate

Precursor
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Isothermal hold at 420°C, (10 < pO, < 500 ppm)
revealed fast conversion of VO, (B) to VO, (T)

S0
VO, (T) 4
(110) -
[ 420°C ] |
~30 minutes
/‘ / hold time
5”\ 81
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Cycling from 25°C to 100°C and back down reveals
VO, (M) to VO, (T) phase change with hysteresis.
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Next step - doping to shift VO,

} phase transition (monoclinic — tetragonal

Decrease T_: large ionic radius, donor dopants

Increase T.: small ionic radius, acceptor dopants
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% Summary

» Use of high temperature XRD has aided in the
diagnosis of synthesis parameters for VO, (T)
formation

* Vanadium oxide precursor (VOP) powders require
harvesting to prevent recrystallization

*VOP powder shows conversion to the desired
tetragonal VO, at 420°C in ~30 min with controlled
PO..

* Clearly detectable VO, (M) to VO, (T) phase
transition observed in 60 to 80°C range.
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