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Outline

 Background

 Warm dense matter (WDM)

 X-ray Thomson scattering (XRTS)

 Research goals

 Explore WDM with XRTS by utilizing the advantages of Z

 X-ray calibrations

 Spherically bent crystals

 X-ray scattering spherical spectrometer (XRS3)

 ZBL experiments

 X-ray source development

 X-ray scattering

 Z experiments

 Dynamic materials properties (DMP)

 Radiatively driven (Z-pinch)
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Fundamental science of warm dense matter (WDM) 

 Condensed matter

 Solid and liquids (crystalline 

and amorphous)  

 Low temperature

 High degree of ordering

4

Cold lattice (bcc)

Hot plasma

 Plasma

 Ionized gas

 High temperature

 Low degree of ordering

 Warm dense matter

 Convergence between condensed matter & plasma

 Large planetary cores, preliminary stages of fusion, 

intense laser-target interactions & particle beam-

target interactions

 High temperature condensed matter (?)

 Strongly coupled plasma (?)



Warm dense matter is an interesting but 

difficult regime to study 

G =
ECoulomb

kBT
»1

 High-temperature condensed matter

 Disordered system whose description requires detailed knowledge of excited states, 

structure factors and dynamics of strongly interacting electrons and ions

 Strongly coupled plasma

 Dominated by ion-ion correlations, it cannot be treated with conventional Debye 

screening & perturbative approaches
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 Comparable Fermi & thermal energy and strong ion-ion coupling

 Densities from ~ 0.1 – 10 times solid density

 Temperatures from ~ 1 – 100 eV



Experimental techniques to study WDM

 Generating WDM extreme states

 Isochoric heating: ion beams, short-pulse lasers, high-energy-density lasers, 

radiation-synchrotron sources (XFEL)

 Shock compression: laser-driven shock, high velocity flyer impact

 Diagnostics for probing WDM 

 VISAR

 Streaked optical pyrometry (SOP)

 X-ray Thomson scattering (XRTS)

 X-ray diffraction

 X-ray & proton radiography

 Extended x-ray absorption fine 

structure spectroscopy (EXAFS)

 Facilities for XRTS-WDM experiments

 NIF (LLNL), Laser Megajoule (CEA), OMEGA (LLE)

 LULI 2000 (Ecole Polytechnique), Vulcan (Rutherford), Titan (LLNL), Trident (LANL), 

LIL (France), Xingguang II (China), Gekko (Japan), Phelix (Germany)

 LCLS (SLAC-Stanford), FLASH (DESY-Germany), SACLA (RIKEN-Japan)



 Inelastic (Compton or Plasmon): energy of incident photon not conserved

 Weakly bound e-

• Binding energy < Compton energy (EC)

 Free e-

X-ray scattering to diagnose WDM

 X-rays scattered from electrons determine plasma parameters

 Electrons absorb x-ray photon, oscillate and re-emit x-ray photon

 Elastic (Rayleigh): energy of incident photon conserved

 Tightly bound e-

• Binding energy > Compton energy (EC)

O. L. Landen, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 465 (2001)
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Non-collective and collective regimes of x-ray scattering

 Plasma screening length: lSL

Fermi-degenerate plasmaClassical plasma
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 Non-collective scattering

 a < 1, (l < lSL)

+

+

+

+-

-
-

-

-

-
-

-

-

-

-

-

lSL

k0=2p/l0

ks=2p/ls

q

k0

ks

k

 Collective scattering 

 a > 1, (l > lSL)

Backward

scattering

Forward

scattering

l ~1/k l ~1/k

O. L. Landen, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 465 (2001)



Scattering related to dynamic structure factor of material

 Total cross-section includes free, tightly and 

weakly bound electron states 
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 Dynamic structure factor S(k,w)

 Fourier transform of probability of finding a particle at a given distance from 

another particle

 Less structured atoms higher probability of scattering at an arbitrary angle, S(k,w) 

becomes constant

J. Chihara, J. Phys. Condens. Matter 12, 231 (2000)
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Extracting information from non-collective XRTS

 Electron density 

 For Fermi-degenerate plasma, width of 

Compton  

 Ionization state

 From profile distribution & intensity 

of inelastic feature due to bound-free 

scattering

O. L. Landen, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 465 (2001)

 Ion temperature

 From intensity of Rayleigh which 

increases with increasing Ti

Te or EF

Ti

 Electron temperature

 For non-degenerate plasma, Compton 

reflect Maxwell-Boltzmann distribution 

which provide Te

µEF
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Extracting information from collective XRTS data

Dw »wpe µne
1/2

 Electron density

 From plasmon frequency shift from 

Rayleigh peak via dispersion relation

 Electron temperature 

 From ratio of up- to down-shifted 

plasmons from detailed balance  

O. L. Landen, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 465 (2001)
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Laser isochorically heated XRTS-WDM experiment

S. H. Glenzer, et al., PRL 90, 175002 (2003); S. H. Glenzer, et al., PRL 98, 065002 (2007)

 Be target: 300 μm long x 600 μm diameter cylinder

 OMEGA: 1 ns heater (10-15 kJ), 1 ns probe (3.5-7 kJ)

 LASNEX: Te = (30-60) & (10-15) eV, ne = (2-3) x1023 cm-3

 Ti-He-a 4.75 keV, 125° scattering 

 Cl-Ly-a 2.96 keV, 40° scattering

 HOPG spectrometer-gated microchannel plate (E/DE ~ 500)

 Best fit to non-collective scattering data

 Te = 53 eV (± 10%)

 ne =3.3x1023 cm-3 (± 10%)

 Best fit to collective scattering data

 Te = 12 eV (± 50%)

 ne =3x1023 cm-3 (± 20%)



Laser driven shock XRTS-WDM experiment

H. J. Lee, et al., PRL 102, 115001 (2009)

 Be target: 250 μm thick x 1 mm diameter spot

 OMEGA: 3 ns heater (3x1014 W/cm2), 1 ns probe (2x1016 W/cm2)

 LASNEX: 20-35 Mbar, 3x compressed

 Mn-He-a 6.181 keV,  90° & 25° scattering

 HOPG spectrometer-gated microchannel plate (E/DE ~ 500)

 Best fit to data

 Te = 13 eV (± 20%)

 Ne = 7.5x1023 cm-3 (± 7%)

 Z = 2 (± 25%) 

 EF = 30 eV (± 7%)



Expanding the scientific capabilities of Z

(temperature, phase, structure factor, ionization)

 Measure temperatures of shock, ramp, and complex-path loading states

 Constrain thermal contribution to EOS for high-pressure experiments

 Measure temperature for ramp or complex-path loading through a phase boundary

 Temperature range: 0.3-20 eV; accuracy: 5-20%

 Phase identification and characterization on ramp and shock loading

 Measure changes in crystal structure (and ultimately isotropy, heterogeneity) along 

a dynamic loading path

 Quantify the influence of correlations on the EOS by measuring the structure 

factor, S(k), as function of wave vector for warm dense matter

 Reconcile non-physical assumptions of previous XRTS work (OCP approximation)

 Measure ionization for dynamically compressed materials at transition from 

insulator to conductor
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XRTS-WDM LDRD project research activities

15

 Design experiment through synthesizing prior work and using simulations

 Create a uniform warm dense matter sample on Z

 Design, fabricate, calibrate a high sensitivity x-ray spectrometer

 X-ray scattering spherical spectrometer (XRS3) 

 Create of an intense x-ray probe source

 Implement complementary diagnostics on Z

 Develop analysis methods, theory, and simulations that connect the 

experiment results with a physical picture and exploit the results to advance 

physics knowledge



XRS3 design based on FSSR 

(focusing spectrometer with spatial resolution) 
 Spherically bent crystal enables double focusing

 Simultaneously obtain high spectral and high spatial resolution

 X-rays from source dispersed from crystal according to Bragg equation
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nl = 2dsinq

D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transf. 99, 595 (2006)

 Source-crystal-detector setup

 Source located outside Rowland circle

 Detector (image plate) outside Rowland circle on line passing through point O

and source

Rowland circle

spherically-bent crystal

radius R

R
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direction
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FSSR provides spatial imaging in sagittal direction and  

spectral dispersion in meridional direction

 Magnification along sagittal direction

17
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a
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R
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D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transf. 99, 595 (2006)
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Crystal characterizations performed on

Manson x-ray source

 Manson x-ray source

 Mn anode: K-a (5.899 keV) & K-b (6.491 keV)

 Crystal characterization parameters

 Relative reflectivity

 Spectral resolution E/DE > 1000

 Spatial resolution < 100 mm

18

spherically bent

crystal

image

plate

XRS3

calibration box

Manson

source

Mn K-a & K-b

x-rays



Highly orientated polygraphite (HOPG) crystals commonly 

used in XRTS-WDM experiments
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 HOPG provides no spatial information and moderate spectral resolution

 Cylindrically bent HOPG, qB = 37°, 30x50 mm, r = 150 mm, mosaic focusing

E/DE = 719

Mn-K-a

Mn-K-b

Mn-K-a



Spherically bent HOPG crystal increases x-ray collection

but still provides no spatial information 
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 Spherically bent HOPG, qB = 37°

 30x50 mm, r = 150 mm, mosaic focusing

E/DE = 686

Mn-K-a

Mn-K-b

Mn-K-a



Spherically bent single crystal provide 

both high spatial and spectral resolution

 Quartz (Inrad), qB = 46°

 Single crystal: 18 mm x 60 mm, r = 150 mm

21

E/DE = 1414

Mn-K-a

Mn-K-b

Mn-K-a

 ~1/20x total collected signal of cylindrical HOPG

2023



Vertical tiling of crystals to increase reflecting area

22

 Quartz (Inrad), qB = 46°

 Two crystals vertically tiled: 36 mm x 60 mm, r = 150 mm

 Multiple images due to crystals bent on slightly different spherical surfaces

E/DE = 1353

Mn-K-a

Mn-K-b

Mn-K-a

 ~1.8x total collected signal of single Quartz

2023
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Horizontal tiling of crystals to increase reflecting area
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 Quartz (Ecopulse), qB = 46°

 Two crystals horizontally tiled: 20 mm x 50 mm, r = 150 mm

 Missing information at the edges of adjacent crystals

E/DE = 1156

Mn-K-a

Mn-K-b

Mn-K-a

2023



Mica crystal would be versatile

due to its multiple orders of reflections
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 Mica (Ecopulse), 7th order, qB = 37°

 Two crystals vertically tiled: 30 mm x 50 mm, r = 150 mm

 Poor focusing due to quality of Mica

E/DE = 1157

Mn-K-a

Mn-K-b

Mn-K-a



Spatial resolution of spherically bent crystal

 Image plate and crystal spatial resolution: ~ 75 mm
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65 mm Au wires, 180 mm spaces

66 mm Ni wires, 494 mm spaces

 Quartz         (Inrad), qB = 46°

 Single crystal: 18 mm x 60 mm, r = 150 mm

2023



Crystal calibration results and future work

26

 Quartz         crystals have been evaluated

 Spectral and spatial resolutions met design criteria

 Vertical tiling of crystals needs tolerances can be tightened

 Horizontal tiling of crystals could result in missing information

 HOPG’s high x-ray collection useful for low scattering signals

 Sacrifice spatial imaging and has poor spectral resolution

 Thin (<100 mm) HOPG/HAPG could provide better spectral resolution

 Mica could still prove useful if better quality crystals are found

 Germanium crystal have been shown to be 3x reflective than Quartz

2023



1st XRTS-ZBL experiments (August 2010)

 X-ray source 

characterization

 XRTS from ambient CH & 

CH2 foam and Al foils

27

ZBL calibration chamber

focusing spectrometer with spatial resolution (FSSR)

Quartz          , r = 150 mm

ZBL calibration chamber

ZBL

Beamlet

2023



Spectrally resolve Mn x-ray source with FSSR

 Mn-He-a (6.181 keV) and satellites (6.151 keV for Z backlighter imaging)

660 mm

Quartz 2023

image

plate
Mn x-ray 

source

ZBL

Beamlet

120 mm

Mn-He-a

(6.181 keV)

6.151 keV
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Comparison of FSSR spectra with 

convex spectrometer and PRISMSPECT calculations

 PRISMSPECT

 Mn plasma, Te = 1800 eV, d = 10-5 cm, ne = 4.6 x 1021 cm-3

Mn-He-a

Mn-He-b

Mn-He-a

Mn-He-b

FSSR 

spectral range

convex spectrometer
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Forward scattering experimental setup

ZBL

2w, 1 ns, 1 kJ

CH foam (210 mg/cm3)

6 × 9 mm
sample

holder

Cu tape

100 mm thick

Mn x-ray source

180 mm thick

FSSR

6.181 keV

x-rays

9 mm

9 mm

3 mm

aperture

source

holder

top view



ZBL

2w, 1 ns, 1 kJ

Mn x-ray source

180 mm thick

Backward scattering experimental setup

foam sample sample

holder

FSSR

6.181 keV

x-rays

3 mm

aperture

top view

rear view

ZBL

2w, 1 ns, 1 kJ

Mn x-ray source

180 mm thick



Encouraging signal levels from

x-ray scattering of cold targets

CH foam (210 mg/cm3)

 Forward scattering 

 Backward scattering

45° 40°

142°97°

Al (2.7 g/cm3)



X-ray scattering of “heated” samples

 X-ray scattering of bare samples unintentionally heated by x-rays and/or 

ZBL laser light (forward scattering)

shielded samplebare sample

CH2 foam (110 mg/cm3)CH foam (210 mg/cm3)

 Inelastic Compton shift (~15 eV) due to weakly bound electrons

35° 30°



2nd XRTS-ZBL experiments (May-June 2011)

 X-ray source development for x-ray Thomson scattering

 Investigate more monochromatic x-ray lines (e.g. V-He-b)

 Study angular dependence of x-ray spectra

spherical 

crystal

image 

plate

XRS3-B

7°
glancing

angle view

XRS3-A

90°
normal

angle view

XRS3-B

7°

XRS3-A

90°

200 mm

ZBL

Beamlet



X-ray source monitored with x-ray pin-hole camera

 X-ray pin-hole camera views target at 45°

 4.375x magnification 

XRS3-B

7°
XRS3-A

90°

target

pin-hole

camera

ZBL

ZBL

target

X-ray pin-hole camera view

y

x



Current x-ray source for Z backlighting

Mn-He-a (6.181 keV)

 X-ray spectra noticeably different at normal and glancing viewing angles

 Satellites next to main line complicate inelastic scattering features

 XRS3-A (q = 90°)  

 XRS3-B (q = 7°)  

ZBL: 1185 J, Quartz          : 46°

Mn-He-a Mn-He-a

Mn-He-a
Mn-He-a

2023



More monochromatic x-ray source

V-He-b (6.117 keV)
 Having a region free of satellites allow unobstructed view of inelastic 

scattering features

 About 1/6x intense as Mn-He-a

 XRS3-A (q = 90°)  

 XRS3-B (q = 7°)  

ZBL: 1162 J, Quartz          : 46°

V-He-b

V-He-b

V-He-b

V-He-b

2023



Lower photon energy x-ray source

Ti-He-b (5.580 keV)

 Slightly lower energy x-ray source but brighter and satellite free region

 XRS3-A (q = 90°)  

 XRS3-B (q = 7°)  

ZBL: 1286 J, Quartz          : 54°

Ti-He-b

Ti-He-b

Ti-He-b

Ti-He-b

2023



Higher photon energy x-ray source

Ni-He-a (7.806 keV)

 Weak x-ray spectra

 Multiple spectra due to multiple reflection orders of Mica

 XRS3-A (q = 90°)  
ZBL: 1385 J, Mica 9th order: 46°

 XRS3-B (q = 7°)  

Ni-He-a Ni-He-a

Ni-He-a Ni-He-a



Examination of ZBL pre-pulse for V-He-b (6.117 keV)

 Varied pre-pulse delay: 

 0 (no pre-pulse)

 1.5 ns (standard pre-pulse)

 5 ns

 For V-He-b pre-pulse possibly not necessary for optimal x-ray production 

unlike the results shown for Mn-He-a

D. B. Sinars, et al., RSI 77, 10E309 (2006)

V-He-b 

(6.117 keV)

V-He-b 

(6.117 keV)



Next XRTS-ZBL experimental campaign

Beam 1

150 mm spot

1 kJ, 1 ns, 1-10 ns delay

Beam 2

300 mm spot

1 kJ, 1 ns
Probe x-rays

Carbon foam (0.1 g/cc; orange) behind Au slit.  

Spectrometer 2 views directly into slit.  

Spectrometer 1 monitors probe x-rays.

Foam Scattering setup

(Room temp. experiment uses the same 

setup, except Beam 2 is turned off.)

foil

 X-ray scattering with room temperature carbon foam targets

 Investigate x-ray scattering physics from a room temperature target

 Learn to optimize future scattering experiments

 X-ray scattering from heated carbon foam targets

 Investigate x-ray scattering physics from warm dense matter

 Develop methods for ZBL x-ray scattering experiments



ZBL experiments results and future work

 X-ray source development

 V-He-b and Ti-He-b provide more monochromatic spectral lines free from 

interference from satellite lines

 Angle dependence of x-ray spectra provide insight into x-ray production and 

optimization

 Investigate pre-pulse optimization for V-He-b type lines

 Higher energy x-ray spectra to be further investigated 

 X-ray scattering

 Initial scattering signals from cold CH foam and Al samples are encouraging

 Unintentional “heating” of CH and CH2 samples stimulate discussions on WDM

 More carefully designed scattering experiments planned for both cold and 

heated samples 



Advantages of XRTS-WDM experiment on Z-DMP load

 Shock-compressed state experimentally determined from flyer’s impact velocity

 Laser-driven shock experiment relies upon hydrodynamic simulations to calculate the 

shock-compressed state

 Z experiment allow pressure and density to be characterized ~ 1-2 %

 Considerably larger samples means more 

uniform shock state: spatially & temporally

 Larger scattering volume for x-rays enable 

more accurate and precise measurements 

of the warm dense matter properties

dimension Z laser Z/laser

target thickness 1 mm 0.25 mm 4

diameter 10 mm 1 mm 10

steady 

state

spatial 

extent

200 – 400 um 25 um 8 – 16

scattering 

volume

15 – 30 mm3 0.02 

mm3

750 - 1500

temporal 

duration

10 – 100 ns 1 ns 10 - 100

Measure Us

Measure up



XRTS of shocked Be on Z 

allow comparison with previous XRTS results 

 ALEGRA calculations with Al flyer (40 km/s)

 14 Mbar, 3 eV in Be target

 Large spatial extent: > 200 mm

 Long time duration: > 10 ns 

ALEGRA simulations by R. Lemke

 Attenuation length of 6.18 keV x-rays

 Be (1.85 g/cm3): 2.44 mm

 Be (4.8 g/cm3): 0.94 mm



XRTS of shocked CH foam on Z 

allow greater control of generated WDM state    

 ALEGRA calculations with Al flyer (30 km/s)

 0.8 Mbar, 7 eV in CH foam target

 Very large spatial extent: > 400 mm

 Very long time duration: > 100 ns

ALEGRA simulations by R. Lemke

 Attenuation length of 6.18 keV x-rays

 CH (0.1 g/cm3): 11.0 mm

 CH (0.7 g/cm3): 1.57 mm

temperature

density

temperature

density



Experimental design of XRTS on Z-DMP load

 Collection of scattered x-rays from both ambient and shocked material of a 

coaxial load

 XRS3 view perpendicular to shock propagation

46

ZBL

laser

x-ray

source

x-rays

XRS3

flyer

> 30 km/s

ZBL

laser

XRS3 line-of-sight view Z load top view

cut-out to 

view target

target



X-ray scattering spherical spectrometer (XRS3)

47

image 

plate

spherically-bent

crystal

XRS3

alignment

telescope

debris

shields

tungsten

box

x-ray

source

translation mount

 Experimental design considerations

 Protection of spherically-bent crystal and image plate detector

 Tungsten shielding of x-rays from Z

 Mitigation of load debris

 Alignment to Z-load



Ride-along experiments needed on Z-DMP shots

 New blast shield for mitigation of debris to ZBL

 Shielding of x-ray background from Z

 Alignment of ZBL to x-ray source target on DMP load
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Radiatively heated XRTS ride-along experiment 

on Z-pinch shots 

 Immense radiation from Z-pinch

 Isochorically heat sample with broadband x-rays

 Probe warm dense matter with intense spectral line: 

Ti-He-a (2 kJ)

 Sample located far from x-ray source

 Highly collimated x-rays allow small angle forward 

scattering
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XRTS-WDM summary and future direction

 Potential of XRTS on Z

 Critical diagnostic to expand the scientific capabilities of Z 

 Temperature, phase, dynamic structure factors, and ionization information

 Progress of XRTS work

 X-ray scattering spherical spectrometer

 Spherically bent crystal calibrations

 ZBL x-ray source and scattering experiments

 Preparation activities on Z

 Blast shield tests on DMP

 X-ray background characterization of DMP and Z-pinch loads

 ZBL alignment on DMP load


