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Outline

Background
=  Warm dense matter (WDM)
= X-ray Thomson scattering (XRTS)

Research goals
= Explore WDM with XRTS by utilizing the advantages of Z

X-ray calibrations
= Spherically bent crystals
= X-ray scattering spherical spectrometer (XRS3)

ZBL experiments
= X-ray source development
= X-ray scattering

Z experiments
= Dynamic materials properties (DMP)
= Radiatively driven (Z-pinch)
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Fundamental science of warm dense matter (WDM)

= Condensed matter

= Solid and liquids (crystalline
and amorphous)

= Low temperature
= High degree of ordering

= Plasma ®
= |onized gas 0 °
| 0® @

= High temperature ®e _o

= Low degree of ordering
Hot plasma

=  Warm dense matter
= Convergence between condensed matter & plasma

= Large planetary cores, preliminary stages of fusion,
intense laser-target interactions & particle beam-
target interactions

= High temperature condensed matter (?) o
= Strongly coupled plasma (?) 1
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Warm dense matter is an interesting but
difficult regime to study

High-temperature condensed matter

= Disordered system whose description requires detailed knowledge of excited states,
structure factors and dynamics of strongly interacting electrons and ions

Strongly coupled plasma

= Dominated by ion-ion correlations, it cannot be treated with conventional Debye
screening & perturbative approaches

Comparable Fermi & thermal energy and strong ion-ion coupling G:w » 1

= Densities from ~ 0.1 — 10 times solid density Hydrogen kT

= Temperatures from ~ 1 — 100 eV 104 pum—
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Experimental techniques to study WDM

Generating WDM extreme states

Isochoric heating: ion beams, short-pulse lasers, high-energy-density lasers,
radiation-synchrotron sources (XFEL)

Shock compression: laser-driven shock, high velocity flyer impact

Diagnostics for probing WDM

VISAR

Streaked optical pyrometry (SOP)
X-ray Thomson scattering (XRTS)
X-ray diffraction

X-ray & proton radiography
Extended x-ray absorption fine
structure spectroscopy (EXAFS)
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Facilities for XRTS-WDM experiments
NIF (LLNL), Laser Megajoule (CEA), OMEGA (LLE)

LULI 2000 (Ecole Polytechnique), Vulcan (Rutherford), Titan (LLNL), Trident (LANL),
LIL (France), Xingguang Il (China), Gekko (Japan), Phelix (Germany)

LCLS (SLAC-Stanford), FLASH (DESY-Germany), SACLA (RIKEN-Japan)
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X-ray scattering to diaghose WDM

= X-rays scattered from electrons determine plasma parameters
= Electrons absorb x-ray photon, oscillate and re-emit x-ray photon

@° scattered x-ray
o e} M
incident x-ray—_/\/\/\/ \» &) ps=hvs/c

5 0O scattering fraction
pi:hvi/C @.\@. "‘10_4

© © © 272

© scattering electron h'k
screening length P~ E.=—

SL 2me

= Elastic (Rayleigh): energy of incident photon conserved
= Tightly bound e ~“NANANAN
+ Binding energy > Compton energy (E.) hv

= [Inelastic (Compton or Plasmon): energy of incident photon not conserved

=  Weakly bound e-
» Binding energy < Compton energy (E.)

= Freee
V.V S

VS
hv; \
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Non-collective and collective regimes of x-ray scattering

= Plasma screening length: Ag,
Classical plasma

Ry, g"”

ene ﬂ

/TF

. 1
= Scattering parameter: a = L

Fermi-degenerate plasma
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o“LYZ
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= Non-collective scattering
= a<l, (A<Ag)

Backward S NO,
scattering RVAVAVAVASLC) © _©
k=274, © @ - @
© © ©
O = -
~— A~k
Ast

O. L. Landen, et al., J. Quant. Spectrosc. Radiat. Transf. 71, 465 (2001)

V4

= Collective scattering
= a>1,(A>Ag)

Forward
scattering
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Scattering related to dynamic structure factor of material

K Stkw)

= Total cross-section includes free, tightly and d’s (dsj
m ko

weakly bound electron states d\/\HW: AW
= Dynamic structure factor S(k,m)

= Fourier transform of probability of finding a particle at a given distance from
another particle

= Less structured atoms higher probability of scattering at an arbitrary angle, S(k,®)
becomes constant

Sk, ) =|£; (k) +q(0)|” S, (k, W)+ Z, S0, (k, w) + Z, OF, (k, w- w)S (k, W)dw
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Extracting information from non-collective XRTS

Electron density

= For Fermi-degenerate plasma, width of T FRCPRTE ¥
Compton ot U3 Rayleigh ﬂ
l‘l F l‘l ne
—_ 0.8 - .
Electron temperature 2 . Compton: ]
= For non-degenerate plasma, Compton \;‘ ' Fermi or T
reflect Maxwell-Boltzmann distribution x 0 Boltzmann !
which provide T, @ 7 distribution; E, ]
3 P
* 0.2|Bound-F _
lon temperature £ ozpPondiree 2 L N
= From intensity of Rayleigh which . J« Te OF B !
increases with increasing T, T

|
8400 8500 8600 8700;8800 8900 9000 9100

lonization state Energy (eV)

= From profile distribution & intensity
of inelastic feature due to bound-free
scattering
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Extracting information from collective XRTS data

= Electron density = Electron temperature
= From plasmon frequency shift from = From ratio of up- to down-shifted
Rayleigh peak via dispersion relation plasmons from detailed balance
Ow~, 1" S
S(- ka - M/) e k]—; (7
Rayleigh Rayleigh
] ] S ]
< < down-shifted
b ; ] - Plasmon ]
@ | ; @ ]
o | up-shifted | (3 Increasing T, |
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Laser isochorically heated XRTS-WDM experiment

9 X-ray Probe Beams 25 um Au cone,
= Be target: 300 um long x 600 um diameter cylinder e it
= OMEGA: 1 ns heater (10-15 kJ), 1 ns probe (3.5-7 kJ) E . B ) S Al k é-gjk';y;’rd
= LASNEX: T, = (30-60) & (10-15) eV, n, = (2-3) x1022 cm= < s o

3 0.6 mm saran

= Ti-He-a 4.75 keV, 125° scattering Graphite (HOPG)
[ e pectrometer
= Cl-Ly-a. 2.96 keV, 40° scattering mosaic focusing

Be target mid-z_f

= HOPG spectrometer-gated microchannel plate (E/AE ~ 500) , foll

Cl Ly-a probe

kS
2.96 keV
9=40°:2 /‘ Kk Forward
Scatter
Ko

2
= Best fit to non-collective scattering data £ L
Distributed
= T.=53eV (x 10%) %5 5~ PumpBeams
Energy (keV) t=0ns

= n,=3.3x10% cm3 (£ 10%)

= Best fit to collective scattering data
= T,=12eV (% 50%)
= ng=3x10% cm3 (*+ 20%)

[ a)‘ " np=33x1023 cm3 b)l
A\ Z=27
Heated Be ! i Best Fit:

Te=53eV

[ T,=70eV

T T T T T T !
sl a) Io:1 fi_aturett ) | b) Best fit of Plasmon:
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A Best fit

ng, = 2.8x 1023 cm-3
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Laser driven shock XRTS-WDM experiment

Be target: 250 pym thick x 1 mm diameter spot

= LASNEX: 20-35 Mbar, 3x compressed
= Mn-He-a 6.181 keV, 90° & 25°

Best fit to data
= T,=13 eV (*+ 20%)
= N, =7.5x10% cm3 (£ 7%)
= Z=2 (% 25%)
= E-=30eV (x 7%)

W E_(from Compton)

50 L A E_(from Plasmon)
rICF S —=— LASNEX simulation
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H. J. Lee, et al., PRL 102, 115001 (2009)

OMEGA: 3 ns heater (3x1014 W/cm?), 1 ns probe (2x1016 W/cm?)

scattering
HOPG spectrometer-gated microchannel plate (E/AE ~ 500)
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Expanding the scientific capabilities of Z
(temperature, phase, structure factor, ionization)

Measure temperatures of shock, ramp, and complex-path loading states
= Constrain thermal contribution to EOS for high-pressure experiments
= Measure temperature for ramp or complex-path loading through a phase boundary
= Temperature range: 0.3-20 eV; accuracy: 5-20%

Phase identification and characterization on ramp and shock loading

= Measure changes in crystal structure (and ultimately isotropy, heterogeneity) along
a dynamic loading path

Quantify the influence of correlations on the EOS by measuring the structure
factor, S(k), as function of wave vector for warm dense matter

= Reconcile non-physical assumptions of previous XRTS work (OCP approximation)

Measure ionization for dynamically compressed materials at transition from
insulator to conductor
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XRTS-WDM LDRD project research activities

Design experiment through synthesizing prior work and using simulations
Create a uniform warm dense matter sample on Z

Design, fabricate, calibrate a high sensitivity x-ray spectrometer
= X-ray scattering spherical spectrometer (XRS3)

Create of an intense x-ray probe source
Implement complementary diagnostics on Z

Develop analysis methods, theory, and simulations that connect the
experiment results with a physical picture and exploit the results to advance
physics knowledge
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XRS3 designh based on FSSR
(focusing spectrometer with spatial resolution)

= Spherically bent crystal enables double focusing
= Simultaneously obtain high spectral and high spatial resolution
= X-rays from source dispersed from crystal according to Bragg equation

nl =2dsing

= Source-crystal-detector setup
= Source located outside Rowland circle

= Detector (image plate) outside Rowland circle on line passing through point O
and source

sagittal

spherically-bent crystal direction

: radius R ‘
E + 1 = 28in q meridional
a b R

______________ direction
—————————— g
crystal-to-source ™\ crystal-to-detector

distance a 1 R distance b

\ : /
e ! e
~~~~~ 1 _——"
~~~~~ H T
source _~— T P

O image plate

Sandia
D. B. Sinars, et al., J. Quant. Spectrosc. Radiat. Transf. 99, 595 (2006) ’11 ll\lal;tion?l )
aboratories




FSSR provides spatial imaging in sagittal direction and
spectral dispersion in meridional direction

meridional plane

= Magnification along meridional direction

2 ! N‘\
— "y . “
— — P 1 ™,
’ 1 \~

mer

my

OI/ (G) = (DMmerSIan)}l

= Magnification along sagittal direction

M = b_ R
sag - = =
a 2asing- R
sagittal
direction _L
[ oL =
meridional —f
direction
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Crystal characterizations performed on
Manson Xx-ray source

= Manson x-ray source

= Mn anode: K-a (5.899 keV) & K- (6.491 keV)
= Crystal characterization parameters

= Relative reflectivity

= Spectral resolution E/AE > 1000 Mn K-o. & K-B
= Spatial resolution < 100 um X-rays
Manson N

source

] i

A

XRS3
calibration box
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Highly orientated polygraphite (HOPG) crystals commonly
used in XRTS-WDM experiments

HOPG provides no spatial information and moderate spectral resolution
Cylindrically bent HOPG, 05 = 37° , 30x50 mm, r = 150 mm, mosaic focusing

3
Mn-K-a
2.
—
n
a
1 Mn-K-B

5806 5000-. 6200 6400 6600
/ enérgy-(eV)

/ ~o

/
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Spherically bent HOPG crystal increases x-ray collection
but still provides no spatial information

= Spherically bent HOPG, 6, = 37°
= 30x50 mm, r = 150 mm, mosaic focusing

5 . .
Mn-K-a
4
3
2
2
1 k Mn-K-p |
- S ->%10-23 T
MP— LoPCr - S _
5%00 6000.._6200 6400 6600
/ energy (eV)
I'l ~‘~§\§\
46 3 : : : : -
E/AE = 686 Mn-K-o
44 4
— 42 3l
13 3
> 40 o

38

36 . . . .
0 20 40 60 80 100 5%70 5880 5890 5900 5910 5920
X (mm) energy (eV)
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Spherically bent single crystal provide
both high spatial and spectral resolution

= Quartz 2023 (Inrad), 05 = 46°
= Single crystal: 18 mm x 60 mm, r = 150 mm

4 ‘ ‘
Mn-K-a
3
%
% 2
-y 1 Mn-K-B |
TN-R4 2023 ~SA ;mﬁ—o] J_fL
5800 60DO.. 6200 6400 6600
/ enérgy-(eV)
4{ | | | _T=-
E/AE = 1414 Mn-K-a,

26 ‘ ‘ ‘ :
10 20 30 40 50 60 5%70 5880 5890 5900 5910 5920
X (mm) energy (eV)

= ~1/20x total collected signal of cylindrical HOPG (: Sandia
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Vertical tiling of crystals to increase reflecting area

= Quartz 2023 (Inrad), 65 = 46°
= Two crystals vertically tiled: 36 mm x 60 mm, r = 150 mm
= Multiple images due to crystals bent on slightly different spherical surfaces

Mn-K-a

Bl = 1 Mn-K-B |
IN-8u2023-VT ~0%l0-of ,’L

5@00 6000 6200 6400 6600
endrgy-(eV )

1 S

E/AE = 1353

29

28

Y (mm)

27

26

10 20 30 40 50 60 5870 5880 5890 5900 5910 5920
X (mm) energy (eV)

= ~1.8x total collected signal of single Quartz 2023
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Horizontal tiling of crystals to increase reflecting area

= Quartz 2023 (Ecopulse), 65 = 46°
= Two crystals horizontally tiled: 20 mm x 50 mm, r = 150 mm
= Missing information at the edges of adjacent crystals

2.5 ‘ ‘
Mn-K-a
2,
1.5
N
ooyl
— 0.5 Mn-K-B]
£C- 042023 ~HT-0a10- 0 ¥ =5 =
. 5800 6006-.6200 6400 6600
' energy-tkeV)
25—
E/AE = 1156 Mn-K-o
2, ]
_ 1.5
£ O
E al
> 1}

10 20 30 40 50 60 5870 5880 gﬁg%f(%({?) 5910 5920
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Mica crystal would be versatile

due to its multiple orders of reflections
Mica (Ecopulse), 7t order, 65 = 37°
= Two crystals vertically tiled: 30 mm x 50 mm, r = 150 mm
= Poor focusing due to quality of Mica

1

Mn-K-a
0.8

0.6

PSL

0.4

Mn-K-
0.2 B—

5800 B006-_ 6200 6400 6600
1

energy<eV)
I \\\\N
1,’ ~ S
E/AE = 1157
0.8

— 0.6
E 7
E o
> 0.4

0.2

5870 5880 5890 5900 5910 5920
energy (eV)
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Spatial resolution of spherically bent crystal

= Quartz 2023 (Inrad), 05 = 46°
= Single crystal: 18 mm x 60 mm, r = 150 mm

66 um Ni wires, 494 um spaces

0.08
0.06

0.04

0.02

intensity (a.

0.00

S 55 4 os 0.5 1 1.5 2
20 30 40 50 60
X (mm)

65 um Au wires, 180 um spaces

o
P

o
.

intensity (a.u.)

o
=

m

20 30 40 50 60 70 80
X (mm)

Image plate and crystal spatial resolution: ~ 75 um
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Crystal calibration results and future work

Quartz 2023 crystals have been evaluated
= Spectral and spatial resolutions met design criteria
= Vertical tiling of crystals needs tolerances can be tightened
= Horizontal tiling of crystals could result in missing information

HOPG’s high x-ray collection useful for low scattering signals
= Sacrifice spatial imaging and has poor spectral resolution
= Thin (<100 um) HOPG/HAPG could provide better spectral resolution

Mica could still prove useful if better quality crystals are found

Germanium crystal have been shown to be 3x reflective than Quartz
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15t XRTS-ZBL experiments (August 2010)

= X-ray source ZBL calibration chamber
characterization .
P Zo : “x'" L,
3 \“ \ %

= XRTS from ambient CH & /// .'-'

focusing spectrometer with spatial resolution (FSSR)
Quartz 2023 r =150 mm
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Spectrally resolve Mn x-ray source with FSSR

= Mn-He-a (6.181 keV) and satellites (6.151 keV for Z backlighter imaging)

20 30 40 50
X (mm)
20 :
Mn-He-+o
(6.181 keV)
15t ]
6.151 keV
-
®10

6.05 6é1nergy (a(.ég) 6.2

6.25

i\
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Comparison of FSSR spectra with
convex spectrometer and PRISMSPECT calculations

= PRISMSPECT
= Mn plasma, T, = 1800 eV, d = 10°cm, n, = 4.6 x 10?* cm-3

20 FSSR
.«— spectral fange —>» ‘ 1 —FSSR‘ | | Mn-He-a.]
—convex
i Mn-He-
15 ¢ ,, 0.8/ “PRISMSPECT
=
010 >06
£
204
©
5,
0.2
g5 6 6.5 7 7.5 8 % 605 61 615 62 625
energy (keV) energy (keV)
convex spectrometer
25 : : : 0.2 : : :
R —convex
Mn-He-a. e --PRISMSPECT
2 1 . o1s Mn-He-$ ,
L
15 /—,/ S
@ R 2 01
1 il 3 { |
e ©0.05 il
0.5 ’,/ Mn-He-B\\\\ | é gLN/\_/\/\A/W
/ \ Wy | i
L '\ M—.—!\_’.—' ; . "‘:’_ o !'. e b :
85 6 6.5 Z 75 B __-----" % 7.4 7.6 7.8 8
energy (keVh_ e energy (keV)
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Forward scattering experimental setup

FSSR
top view A
CH foam (210 mg/cm?) 3 mm sample

6 x 9 mm \ aperture holder

Cu tape / )

100 pum thick ~—~— —————

A
y
N\

'O mm

__— Mn x-ray source
180 um thick
ZBL
20, 1 ns, 1 kJ ’ N T source
9 mm holder
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Backward scattering experimental setup

FSSR
I\
top view
foam sample 3 mm sample
aperture holder

H Mn x-ray source
180 um thick
2BL 6.181 keV
20,1 ns, 1 kJ X-rays

rear view

Mn x-ray source

180 um thick
ZBL

2m,1ns,1kJ
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Encouraging signal levels from
X-ray scattering of cold targets

CH foam (210 mg/cm3)
Forward scattering

1f---ZBL-1: Mn x-ray source 45°
—ZBL-7: CH foam (210 mg/cc)
@ 0.8
E )
2\0.6- ¥
k)
20.4f
©
0.2
6 6.05 6.1 6.15 6.2 6.25

energy (keV)
Backward scattering

—

--ZBL-1: Mn x-ray source 97°

o o o
£ O

arbitary units

o©
AN

(@)

—ZBL-14: CH foam (210 mg/cc)f;

L

»

605 61 615
energy (keV)

Al (2.7 g/lcm3)

---ZBL-1: Mn x-ray source 40°
0.8f [—ZBL-9: Al (25 o«m)
®
S 0.6;
P
8
S 0.4+
©
0.2
G6 6.2 6.25
1t |---ZBL—-1: Mn x-ray sourc 142°
—ZBL-17: Al (25 om)
0.8}
0.6}

o
=

arbitary units

o
N
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arbitary units

X-ray scattering of “heated” samples

bare sample sh

~

ielded sample

= X-ray scattering of bare samples unintentionally heated by x-rays and/or
ZBL laser light (forward scattering)
CH foam (210 mg/cm3) CH, foam (110 mg/cm?)

2B G o e chean Tomaes
0.8 ' , 08
0.6 50.6
0.4r %0.4
0.2r 0.2r

%05 """ 61 605 6.2 6.25 - R E - 6.2 6.25

energy (keV)

energy (keV)

= Inelastic Compton shift (~15 eV) due to weakly bound electrons
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2"d XRTS-ZBL experiments (May-June 2011)

= X-ray source development for x-ray Thomson scattering
= |nvestigate more monochromatic x-ray lines (e.g. V-He-f)
= Study angular dependence of x-ray spectra

1kJ
1 ns with 0.5 ns prepulse

150 um spot Metal foil

Ti,V, Mn, or Ni

XRS3-A /
90° 200 mm
XRS3-B \Q
normal 70
angle view

glancing ZBL
angle view Beamlet
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X-ray source monitored with x-ray pin-hole camera

= X-ray pin-hole camera views target at 45°

4.375x magnification

pin-hole
camera

an b
- '.?.‘

-

/ -7BL
targe “ "

X-ray pin-hole camera view

| target ®
T 9 w Y

) 300 349 320 330 340 ¥
wluu'ynlnn‘.

Y (325 am)
—X (225 om)

%o 0 500
X,y (om)
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Current x-ray source for Z backlighting
Mn-He-a (6.181 keV)

X-ray spectra noticeably different at normal and glancing viewing angles
Satellites next to main line complicate inelastic scattering features

= XRS3-A(6=90° ) ZBL: 1185 J, Quartz 2023: 46°
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More monochromatic x-ray source
V-He-B (6.117 keV)

Having a region free of satellites allow unobstructed view of inelastic
scattering features

About 1/6x intense as Mn-He-a
ZBL: 1162 J, Quartz 2023: 46°
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Lower photon energy Xx-ray source
Ti-He-B (5.580 keV)

Slightly lower energy x-ray source but brighter and satellite free region
= XRS3-A (0= 90° ) ZBL: 1286 J, Quartz 2023 54°
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Higher photon energy Xx-ray source
Ni-He-a (7.806 keV)

Weak x-ray spectra

= Multiple spectra due to multiple reflection orders of Mica

= XRS3-A (0=90° )
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Examination of ZBL pre-pulse for V-He-B (6.117 keV)

= Varied pre-pulse delay:
= 0 (no pre-pulse)
= 1.5 ns (standard pre-pulse)
= 5ns

= For V-He-J3 pre-pulse possibly not necessary for optimal x-ray production
unlike the results shown for Mn-He-a
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Next XRTS-ZBL experimental campaign

X-ray scattering with room temperature carbon foam targets
= |nvestigate x-ray scattering physics from a room temperature target
= Learn to optimize future scattering experiments

X-ray scattering from heated carbon foam targets
= |nvestigate x-ray scattering physics from warm dense matter
= Develop methods for ZBL x-ray scattering experiments

Foam Scattering setup
(Room temp. experiment uses the same
setup, except Beam 2 is turned off.)

Beam 2
300 pum spot Probe x-rays

{e]l

150 um spot
1kJ, 1ns, 1-10 ns de

Carbon foam (0.1 g/cc; orange) behind Au slit.
Spectrometer 2 views directly into slit.
Spectrometer 1 monitors probe x-rays.
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ZBL experiments results and future work

= X-ray source development

V-He-f3 and Ti-He- provide more monochromatic spectral lines free from
interference from satellite lines

Angle dependence of x-ray spectra provide insight into x-ray production and
optimization

Investigate pre-pulse optimization for V-He-3 type lines
Higher energy x-ray spectra to be further investigated

= X-ray scattering

Initial scattering signals from cold CH foam and Al samples are encouraging
Unintentional “heating” of CH and CH, samples stimulate discussions on WDM

More carefully designed scattering experiments planned for both cold and
heated samples
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Advantages of XRTS-WDM experiment on Z-DMP load

Shock-compressed state experimentally determined from flyer’s impact velocity

= Laser-driven shock experiment relies upon hydrodynamic simulations to calculate the
shock-compressed state

= Z experiment allow pressure and density to be characterized ~ 1-2 %

Measure Ug

(4]
(=3
if

Considerably larger samples means more
uniform shock state: spatially & temporally
= Larger scattering volume for x-rays enable

more accurate and precise measurements
of the warm dense matter properties
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= ALEGRA calculations with Al flyer (40 km/s) *°f

XRTS of shocked Be on Z
allow comparison with previous XRTS results

Al/Be density vs. X @ impact; t=3.26e-6 s

= 14 Mbar, 3 eV in Be target
= Large spatial extent: > 200 um
= Long time duration: > 10 ns

= Attenuation length of 6.18 keV x-rays

= Be (1.85 g/cm3): 2.44 mm
= Be (4.8 g/cm?3): 0.94 mm

Al-Be impact; T & p vs. t @ 400 zm in Be
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XRTS of shocked CH foam on Z
allow greater control of generated WDM state

= ALEGRA calculations with Al flyer (30 km/s)

= 0.8 Mbar, 7 eV in CH foam target
= Very large spatial extent: > 400 um
= Very long time duration: > 100 ns

= Attenuation length of 6.18 keV x-rays

= CH (0.1 g/cm?3): 11.0 mm
= CH (0.7 g/cm3): 1.57 mm

density & temperature in CH AX=0.36 cm
1 T

1.0

0.8

temperature —p -

o
o
—T T

< density

Density (g/cm®)

o
Y
T

0.2

ool ., ., oo oo,

10

-18

3.35 3.40 3.45
Time (s) x1E-6

ALEGRA simulations by R. Lemke

Temperature (eV)

Time (s) x1E-6

3.7F
r —— rarefaction 80.8 km/s

shock 36.3 km/s

density & temperature vs. X @ t=3.40e-6 s

1.0 10
. < density
0.8 -8
r temperature 1
R I 1 =
E o6 dg &
e L 4 @
! 5
[+
S 04F -4 g
a r 1 8
> \j I
ool o o o T . To
1.00 1.05 1.10 1.15 1.20

X {(cm)

rarefaction & shock wave arrival time in CH

i

vandia
National _
Laboratories



Experimental design of XRTS on Z-DMP load

Collection of scattered x-rays from both ambient and shocked material of a

coaxial load

=  XRS3 view perpendicular to shock propagation

ZBL
laser

cut-out to
view target

=
-____-

XRS3 line-of-sight view

[11.20]

flyer ZBL
> 30 km/s laser
J
®
HO
ol —>
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» @ é
o] =N
L [O]
Jdolll —
®
410 — target
®
®
B
XRS3

Z load top view

X-ray
source
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X-ray scattering spherical spectrometer (XRS3)

= Experimental design considerations

Protection of spherically-bent crystal and image plate detector
Tungsten shielding of x-rays from Z

Mitigation of load debris
Alignment to Z-load

tungsten
box

X-ray

alignment
source

telescope =up wpj

pherically-bent
crystal

translation mount
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Ride-along experiments needed on Z-DMP shots

= New blast shield for mitigation of debris to ZBL
= Shielding of x-ray background from Z
= Alignment of ZBL to x-ray source target on DMP load

ZBL
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Radiatively heated XRTS ride-along experiment
on Z-pinch shots

= Immense radiation from Z-pinch Local B

= |sochorically heat sample with broadband x-rays

= Probe warm dense matter with intense spectral line:
Ti-He-a (2 kJ)

= Sample located far from x-ray source
= Highly collimated x-rays allow small angle forward
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XRTS-WDM summary and future direction

= Potential of XRTS on Z
= Critical diagnostic to expand the scientific capabilities of Z
= Temperature, phase, dynamic structure factors, and ionization information

= Progress of XRTS work
= X-ray scattering spherical spectrometer
= Spherically bent crystal calibrations
= ZBL x-ray source and scattering experiments

= Preparation activities on Z
= Blast shield tests on DMP
= X-ray background characterization of DMP and Z-pinch loads
= ZBL alignment on DMP load
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