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O(3P) + alkene reactions

• O(3P) is a key oxidant in combustion chemistry above 1100 K.

– O(3P) + HCCH  3CH2 + CO
 HCCO + H

• Reactions begin on the triplet surface, but may end on the singlet

– Multi-surface, multi-channel reaction dynamics

• Previous Studies

– R. J. Cvetanovic & co-workers (Rev. Chem. Intermed. 5, 183 (1985))

– I. R. Sims, I. W. M. Smith, S. J. Klippenstein (Science 317, 102 (2007))

– J. M. Bowman, P. Casavecchia, et al. (JCP 137, 22A532 (2012))

– W. L. Hase, T. L. Windus, et al. (JPCA 113, 12663 (2009))

– …many others on O + C2H4

Triplet surface only



O(3P) + C3 and larger alkenes

• Cvetanovich Rules:

– O(3P) electrophilic addition to least-substituted carbon in C=C bond, 
forming a triplet biradical

– Triplet biradicals decompose via H or CH2 loss

– Intersystem Crossing (ISC) leads to singlet surface, on which hot 
epoxides or hot carbonyl compounds decompose.

• Open Questions:

– Central vs. terminal addition of O(3P).

– Time-resolved product branching ratios.

– Where is triplet-singlet crossing seam?

– Multiple triplet surfaces needed?

– Are multi-dimensional non-adiabatic
calculations needed to predict observables? central terminal



Previous experimental approaches

• Two traditional categories

– Non-time-resolved, end product analysis of many species (Cvetanovich)

– Time-resolved monitoring of 1 or 2 species

• Our approach

– Time-resolved detection of many species, collisional environment

• Global view of reaction

• Discriminate primary from secondary chemistry (time-resolution)

• Distinguish product isomers (tunable photoionization)

• Sensitive to stabilization dynamics via collisions

– P. Casavecchia:  many species, single-collision environment (O + C2H4)

• Translational energy and angular distributions!



Multiplexed Photoionization Mass Spectrometer

Continuous ionization source
Complete mass spectrum every 20 s

NO2 + 351 nm  O(3P) + NO
 O(3P) + NO2  NO + NO
 O(3P) + CH3-CH=CH2  products



Singlet
only

Singlet
or

Triplet

Open product channels

O(3P) + CH3-CH=CH2  CH3-CH-CH2 (methyloxirane)

CH3-CH2-CHO (propanal)

 CH3 + CH2-CHO (methyl + vinoxy)

 CH3CH2 + HCO (ethyl + formyl)

 CH3-CH-CHO + H (methylvinoxy + H)

 CH3-CH=C=O + H2 (methylketene+ H2)

 CH2=CH2 + H2C=O (ethene + formaldehyde)

O



Potential Surfaces Preview
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W. Zhang, B. Du, and C. Feng, J. Mol. Struct. 806, 121 (2007)
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Experimental Methods:  Time vs. Mass
S(m/z, t, h)  S(m/z, t)
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Experimental Methods:  Photon Energy vs. Mass 
S(m/z, t, h)  S(t, h)
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Primary vs. Secondary Products
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 m/z = 15
 m/z = 29
 m/z = 44
 m/z = 56
 m/z = 58

CH3 + CH2-CHO (methyl + vinoxy) [15 + 43]

CH3CH2 + HCO (ethyl + formyl) [29 + 29]

CH3CH=C=O + H2 (methylketene + H2) [56 + 2]

CH3 CHO (acetaldehyde) [44]

CH3CH2 CHO (propanal) [58]

CH3-CH-CH2 (methyloxirane) [58]

O



O

Vinoxy fragmentation
to CH3

+ daughter ion

m/z = 15 (methyl and daughter ions)

• Use isotopic labeling to explore pathways:

– CH3-CH=CH2 ; CH3-CD=CH2 ; CH3-CH=CD2

• CH3-CH=CH2  m/z = 15  methyl + daughter ions

• CH3-CD=CH2  m/z = 15  methyl only
m/z=16  mostly daughter ions

• CH3-CH=CD2  m/z = 15  methyl only
m/z=17  mostly daughter ions

m/z = 15

m/z = 16/17

Conclusion 1:  Almost all methyl
radicals come from
methyl group
of propene



C2H5 + HCO channel (m/z ~ 29)

• Both ethyl and formyl detected

• Daughter ion from something at 10.1 eV

• Branching ratio from ethyl fragment

Conclusion 2:

C2H5 + HCO 0.91  0.30
CH3 + CH2CHO 1

=



Methylketene chanel (m/z = 56)

• m/z = 56 is perfect fit to known
methylketene spectrum 

• CH3CH=C=O + H2 must arise from
singlet PES

• Deuterated propenes show that:

Conclusion 3:  methylketene channel is 5% ( 4) of methyl channel

+ O(3P)

O

+ H2

+ O(3P)



H + CH3CHCHO (methylvinoxy)

• Both vinoxy (CH2CHO) and methylvinoxy show no signals at parent 
masses (m/z = 43 and m/z = 57)

• Poor Franck Condon factors and unstable cations

• Vadim Kynazev measured O(3P) + propene  H + products

– V. D. Kynazev et al., Int. J. Chem. Kinet. 24, 545 (1992).

– Measured absolute branching fraction 0.46  0.11

Conclusion 4:  H + methylvinoxy is a major channel
and the only channel we cannot observe



Experimental product branching ratios
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Potential Energy Surfaces
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Conclusions

• No evidence for deuterium scrambling

– CH3 + CH2CHO (vinoxy) arises from simple bond fission
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• H2 + CH3CH=C=O pathway (singlet surface) does NOT go through propanal—must 
happen via methyloxirane

– Intersystem crossing leads directly to methyloxirane, not to propanal or other 
species.

– Barrier for this tight elimination from methyl similar to isomerization to propanal.
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• CH3CH2 + HCO is also created on the singlet surface 

– (barrier too high on the triplet).



Conclusions
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• Rate of intersystem crossing must be similar to rate of CH3 + 
CH2CHO on triplet surface



Pathway summary

O(3P) + C3
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•QCT calculations?
•Non-adiabatic TST

Our Needs
Conclusions

•~40% of total products
are born on the singlet
surface
•No stabilization to
C3H6O at 4 torr
•ISC crossing leads
directly to 
methyloxirane



Future of theoretical calculations

• 1)Quantum studies the gold standard – too hard for > 4 atoms

• 2) Quasi-classical trajectories (analytic or on-the-fly) the silver 
standard

– Hase & Windus  Multireference wavefunctions needed.

– Bowman & Casavecchia  analytic surface w/MRCI  QCT

• 3) Robust statistical methods needed for larger systems

– Morokuma / Klippenstein / Harvey

• 4) Will multidimensional treatments be needed to reproduce rates, 
branching ratios, and product state distributions?

– Spin-orbit coupling  depends on more than just reaction coordinate

– Non-adiabatic  transition itself depends on more than reaction coord.
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Secondary chemistry

• H atoms from H + CH3CHCHO

• H + NO2  OH + NO

• OH + propene  H2CO, Acetone, propanal, methyloxirane


