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Outline

• AMG background

– popular approaches: inexpensive, often effective, but rigid

• Energy minimization AMG

– arbitrary coarsening, flexible coarse basis function support

• Energy minimization costs & amortization
– Reuse & initial guess choice

• Leveraging flexibility

– structured AMG for exascale architectures

– mixed finite elements, 

– extended finite elements & anisotropic PDEs



What is   Multigrid ?

• Determine Pi & Ri’s coefs

• Project: Ai = Ri Ai+1 Pi

• Construct Graph & Coarsen

Solve A3u3=f3

Solve A1u1=f1 directly.

Smooth A3u3=f3. Set f2 = R2r3.

Smooth A2u2=f2. Set f1=R1r2. Set u2 = u2 + P1u1.  Smooth A2u2=f2. 

Set u3 = u3 + P2u2.  Smooth A3u3=f3. 

P2 R2

P1 R1

• Determine Pi & Ri sparsity pattern 

Algebraic 
^



• new AMG algorithms, e.g. energy minimization

• leverages Trilinos/Kokkos for multi-core/GPU performance

• templating for mixed precision

• designed for flexibility

• special application circumstances

• architecture considerations

• reuse

MueMat/ MueLu
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AMG limitations …

Best understood theoretically for 
scalar elliptic PDEs with standard discretizations

(e.g. linear nodal FE & finite differences),
but often works on broader range of systems.

Deficiency:  Classical AMG & smoothed aggregation are rigid & not 
easily adapted to advanced situations. 

 coarsening rules:  diameter 3 aggregates or 
(C1) for each i  F, each point  j  Si should either be in C, or

should be strongly connected to at least one point in C  Si

(C2) C should be a maximal subset of all points with the property               
that no two C-points are strongly connected to each other

 coarsening, P sparsity pattern, pij choices are often tied together

 strong/weak decisions influence multiple phases of algorithm

 accurate interpolation of constants automatically addressed, but 

considering other important modes can be problematic



AMG & Energy MinimizationAMG & Energy Minimization

Tradeoffs:

+ flexibility
 any coarsening
 any sparsity pattern
 constraints

important modes
requiring accurate   
interpolation

+ robustness

Ak
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mode constraints
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or equivalently 

“solve” Â P = 0  where

and 

Minimization candidates include     CG & Chebyshev, GMRES & CGNR

Constraints

– P  Bc = B  X P = g     via  Q = ( I – XT(X XT) -1 X )

Constraint Satisfying Space might be

Q Â P0 , (QÂ)2P0 , (QÂ)3P0 , (QÂ)4P0 , …

“Solve”  AP = 0
1) with minimization algorithm
2) in space satisfying constraints 
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Prolongator construction cost

• Costs:

Matrix-matrix multiply: A P

1 Krylov iteration    Remove nnzs beyond desired sparsity pattern

Apply Q = I – XT(X XT)-1X

• Practical algorithms follow …

– Few iterations needed, e.g. Smoothed Aggregation

– Computation of (X XT)-1 easy as

– Amortization opportunities: init. guess,  reuse of X XT
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MueLu Emin Setup Scaling

3D Laplace via 7 pt stencil

• 2 CG Emin iterations
• P0 via tentative prolongator
• same sparsity pattern as SA

3D elasticity with Poisson ratio .25

• 2 CG Emin iterations
• P0 via tentative prolongator
• same sparsity pattern as SA

Setup
Solution

2 Emin iterations typically fine for AMG convergence
SA sparsity pattern   solver cost comparable with SA

1 Emin iter.  Setup cost  1.5-2x > SA setup   not too significant



Setup Amortization

• Emin generally more expensive than SA

• Typically solve a sequence of related linear systems
- time stepping, Newton, continuation, inverse problems, UQ, …

• Many setup components can often be reused
– P0 , sparsity pattern, matrix graphs, constraint builder, even

some substeps of matrix-matrix multiply

– depends on changes to …  
mesh & matrix coefficients and strength-of-connection

• Previous Pfinal can be used for next P0  fewer Emin iterations



Ice Sheet Amortization Test Case

Two coupled non-linear PDEs

with Glen’s law viscosity

Newton’s method & continuation used



Ice Sheet Results

• Emin(k):   k Emin iterations, no reuse

• Emin(k,1) k Emin iterations

• Solve times comparable for Emin(6) and Emin(6,1)

• Emin(6,1) setup times  4x better than Emin(6)



aggregates
elasticity &bad 
aspect ratiosextended FE

Exploiting Energy Minimization’s Flexibility 

stretched meshes 
unstructured to structured mixed finite elements



Unstructured  Structured

Why? 

computational efficiency … on large parallel systems

• Overlay unstructured grid with structured grid.

• Coarse DOFs on structured mesh, interpolate 
from fine DOFs within rectangles.

• Interpolation weights found with energy 
minimization.



Unstructured  Structured

Au=f

A2e2=r2

A1e1=r1

Structured meshes

Unstructured mesh

domains Emin its

4  4 12

8 8 11

12  12 10

16  16 10

#DOFs

Unstructured 
AMG

Unstruct
/struct
AMG

SA Emin Emin

69185 77 
(1.95)

59 
(1.95)

31
(1.59)

277633 112 
(1.93)

84 
(1.93)

38 
(1.61)

 caveat:  unstr. is 3-level, unstr. to struct. is 2-level



Mixed Finite Elements
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Mesh Iters complexity

9 x 9 20 2.01

17 x 17 25 1.81

65 x 65 Xx Xx

257 x 257 29 1.91



Concluding Remarks

• Energy Minimizaiton AMG provides great flexibility

• Parallel practical variants definitely possible

– a couple of Krylov sweeps

– careful implementation of constraints

– amortization

• Many situations arise where flexibility is useful

– large scale parallel computations

– advanced discretizations

– stretched meshes

• Research needed to steer through some of the choices

F/C
coarsen

classic
AMG

geometric
MG

smoothed

aggregation



Related & Future Work

Helmholtz solvers
• Implemented parallel shifted-Laplacian AMG solver

• tested on acoustic weapons problem

• Analyzed strengths/weaknesses of shifted-Laplacian

• Developed 2nd projection to accelerate shifted-Laplacian

Smoothers for MHD based on physics-based preconditioning 
• Trilinos code under development

• Will be combined with Q2-Q1 AMG work

Coarsening/sparsity pattern scheme mimicking compatible relaxation idea 
• Analyze intermediate Emin prolongators & correct deficiencies.


