

Divide and Conquer Quantum Mechanical Methods for Phononic Applications

Rudolph J. Magyar
Multi-scale Dynamic Materials Modeling
Sandia National Laboratories
Albuquerque, NM 87185
E-mail: rjmagya@sandia.gov

Phonons from First Principles

- Vibrational frequencies calculated for individual atoms
- Complicated super cell and molecular geometries
- Model Hamiltonians for phonons once frequencies are calculated

Frequencies ~ Thz

Distances ~ nm

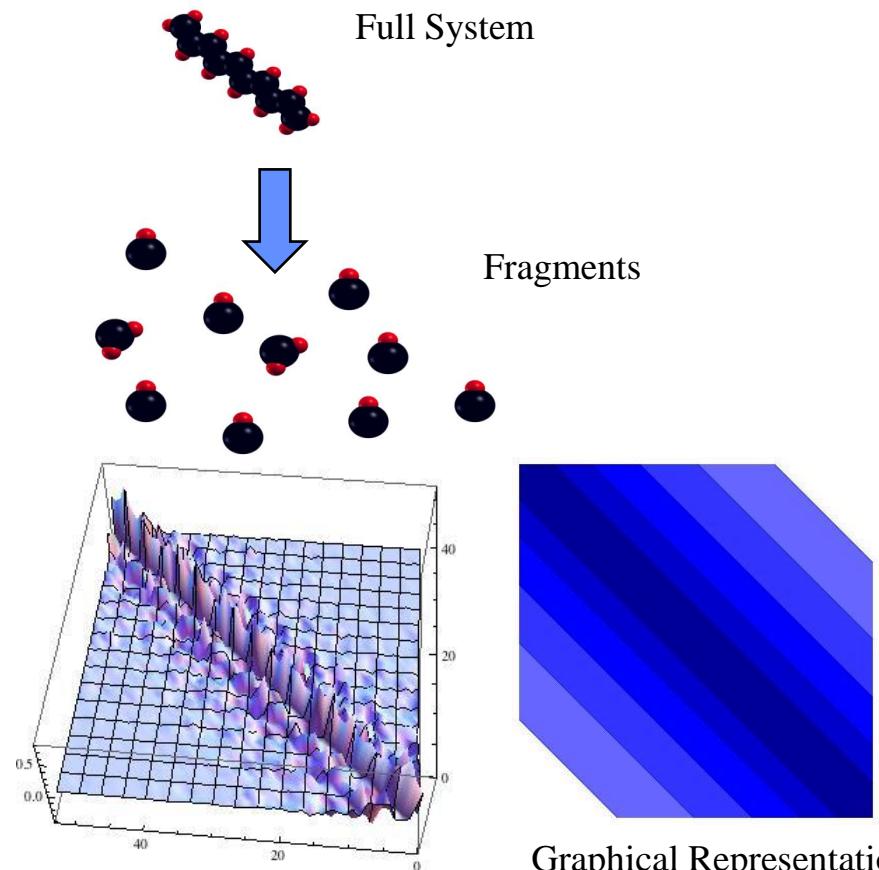
Sound speeds ~ km/sec

Why Quantum Mechanical Simulations?

- Quantum-inspired dynamic simulations of large systems
1000s-10000s of atoms
- Currently quantum simulations of such large sizes are limited
- Benchmark ReaxFF force field and tight-binding simulations
- Increasing the time and spatial scales of quantum informed calculations
- Test systems: Benzene, polyacetylene, CL20 clusters

Divide and Conquer

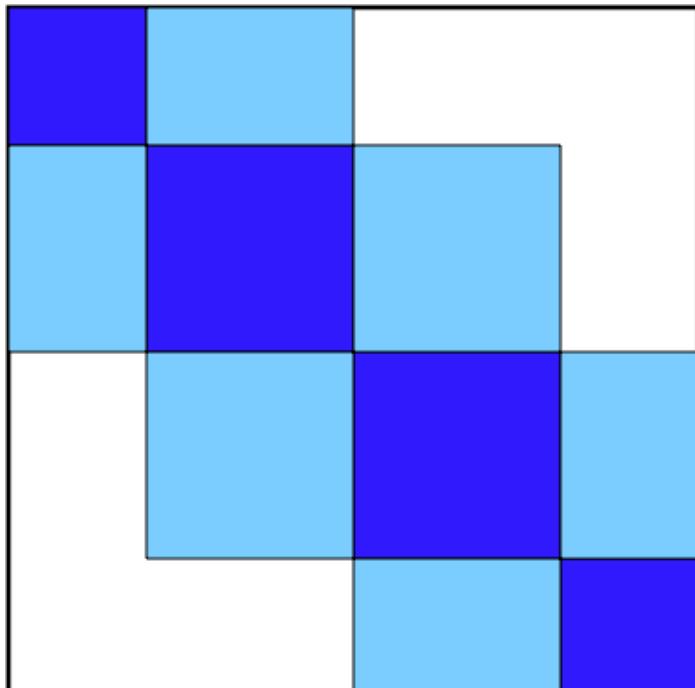
- Decompose many atomic system into fragments
- Assign buffer regions to each fragment
- Solve problem in each fragment
- Use the fragment results to obtain a global result for example for total energy
- **Scaling as $N_{\text{fragments}} \ll N_{\text{atoms}}$**



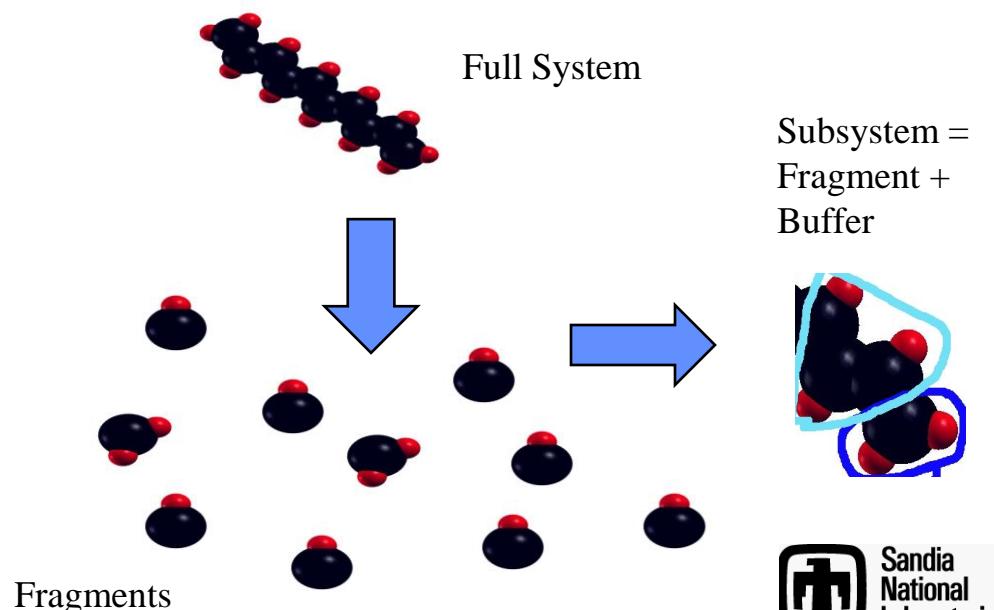
Support Regions
of the Density Matrix

Graphical Representation
of the Density Matrix

Partitioning the Density Matrix



$$\text{DM(exact)} = (\text{[blue block]})$$
$$\text{DM(Frag.)} = (\text{[light blue and blue blocks]})$$
$$\text{DM(Frag.+Buff.)} = (\text{[light blue, blue, and light blue blocks]})$$



Large Matrices come into Play

$$E = \text{Tr}(DF) \gg \sum_i \text{Tr}(D_i F_i)$$

i = {fragments}

$$F = \text{func}(D) \stackrel{?}{\gg} \sum_i \text{func}(D_i)$$

i = {fragments}

$$F(\text{Large Matrix}) \sim F(\text{Small Matrix}) \neq \text{Sum } F(\text{Small Matrix})$$

Forces and Vibrations

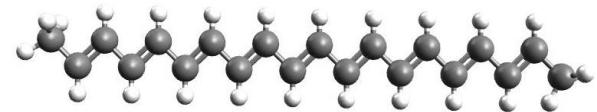
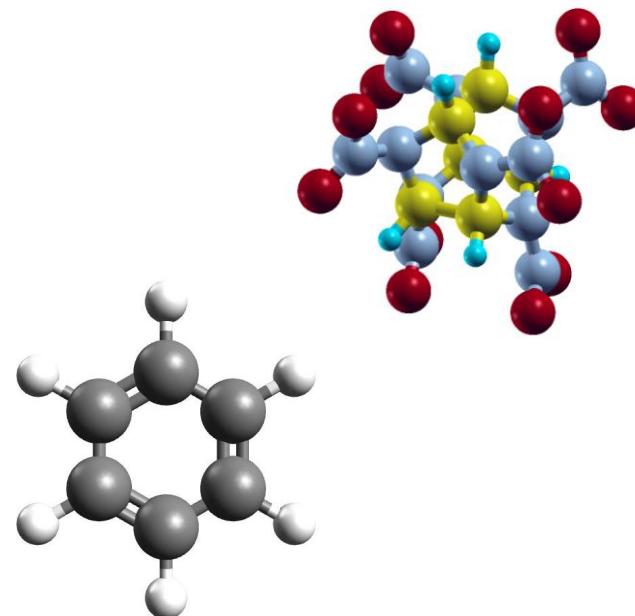
$$F_{i,x} = (E(x_0 + D) - E(x_0)) / D$$

$$W_{ii,x}^2 = (E(x_0 + D) + E(x_0 - D) - 2E(x_0)) / 4D$$

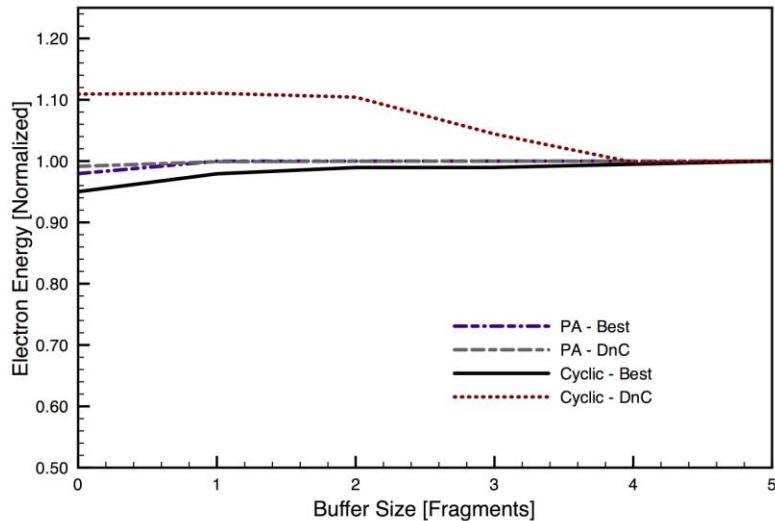
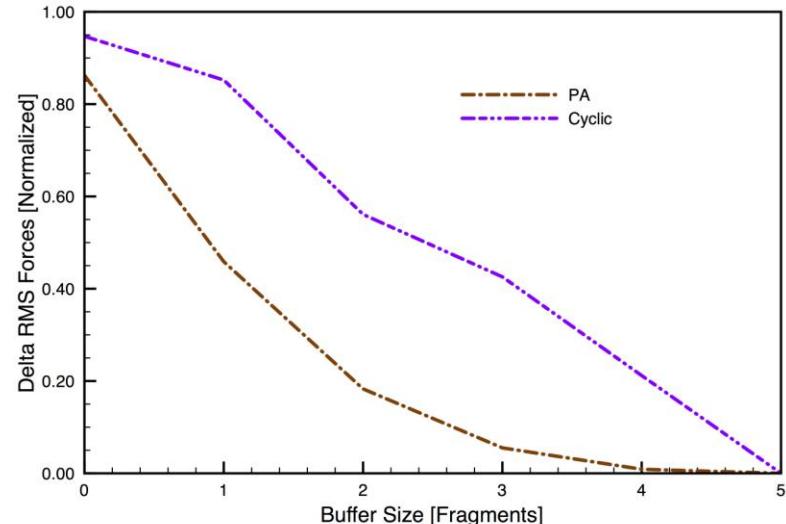
- **Total energies can be calculated in various quantum mechanical formalisms using divide and conquer techniques: DFT, semi-empirical, Hartree-Fock**

Testing on Small Systems

- Small systems can be calculated exactly and in the divide and conquer formalism
- Validation of method
- MINDO3 – semi-empirical



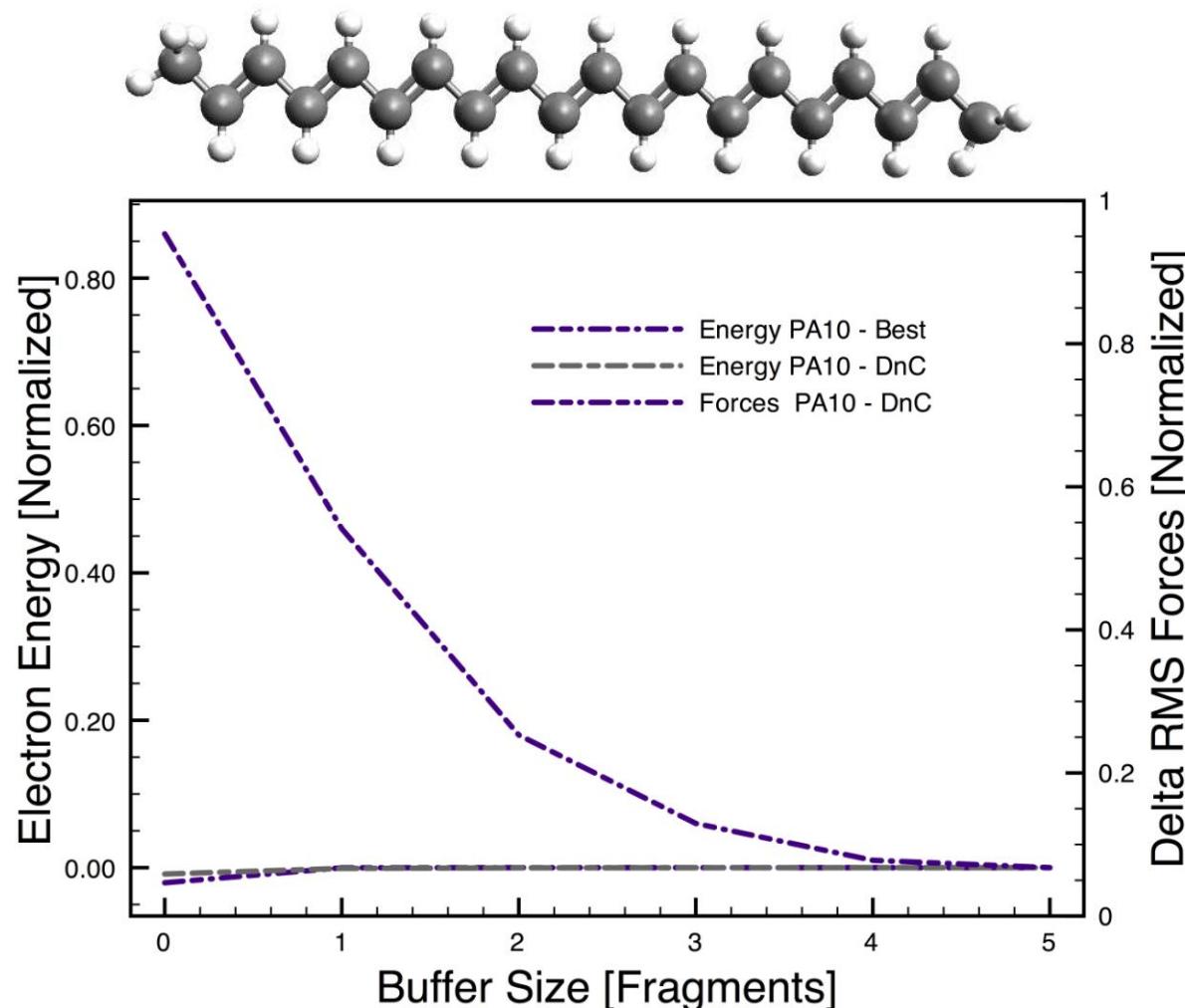
Energy Convergence



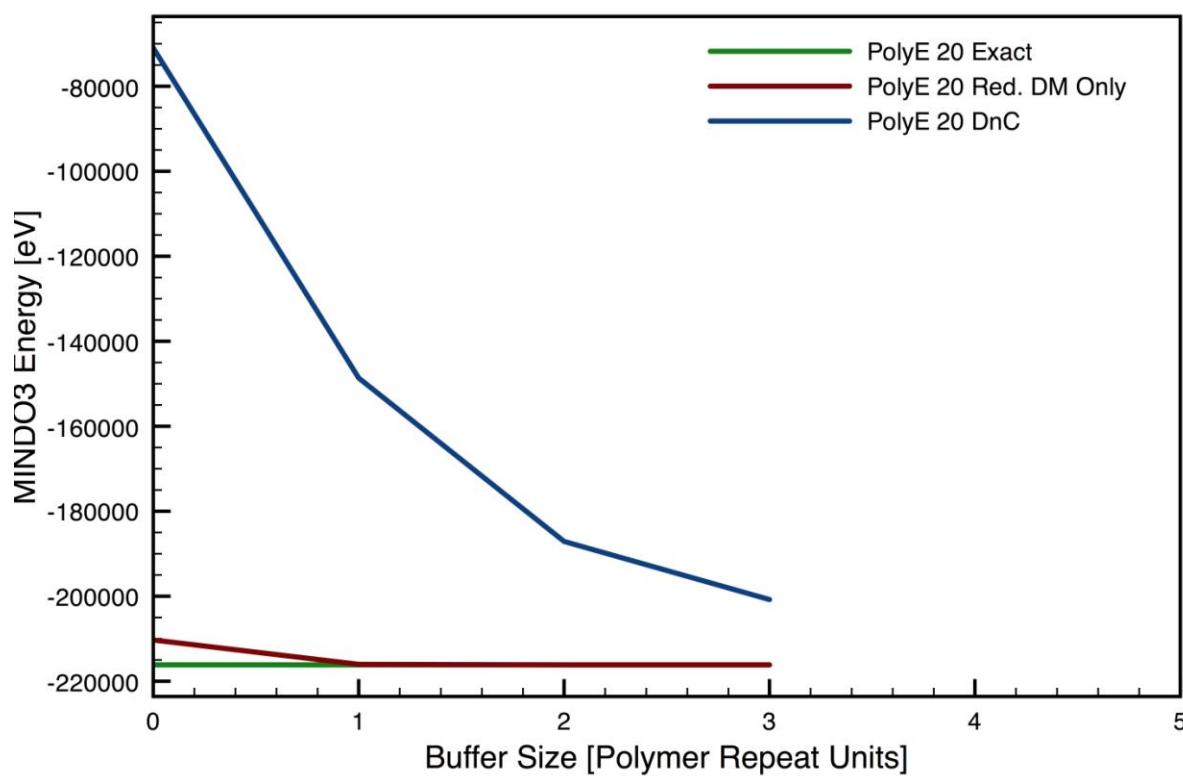
Faster for linear Poly-Acetylene than for the cyclic 10-Alkane due to Coulomb contributions from opposite sides of loop

Best indicates the result using matrix elements from the exact solution.

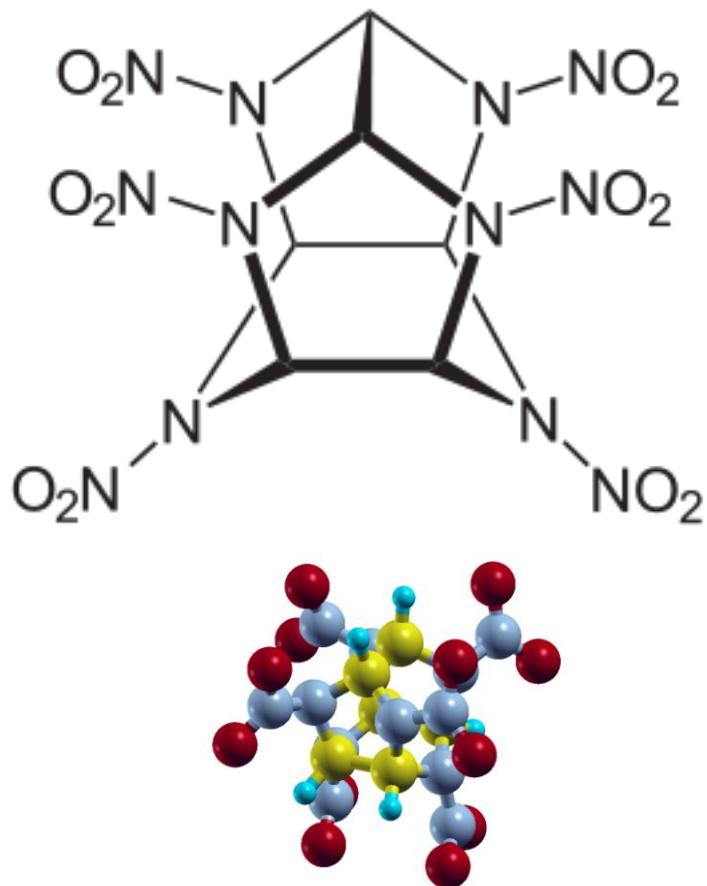
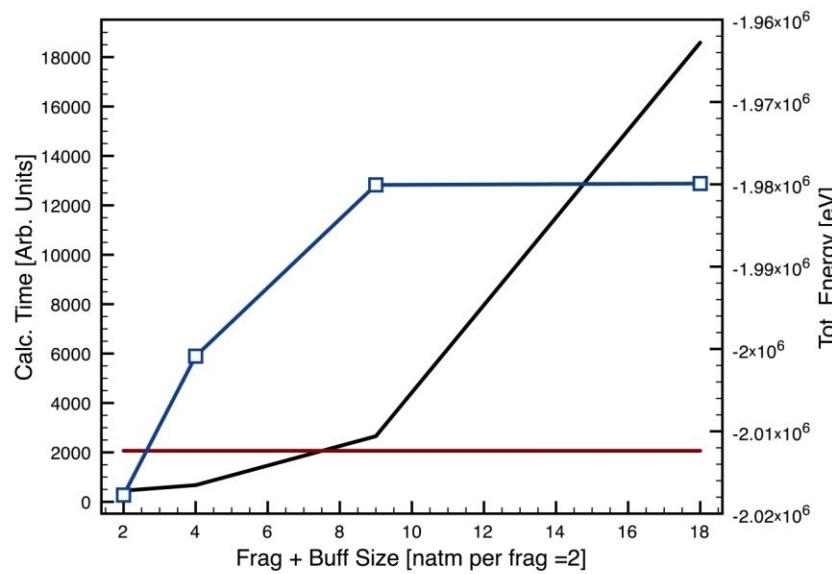
PA10



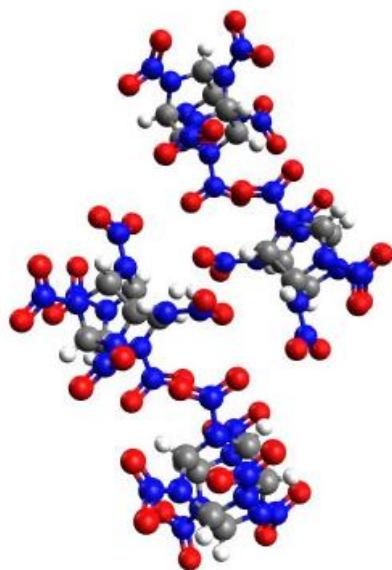
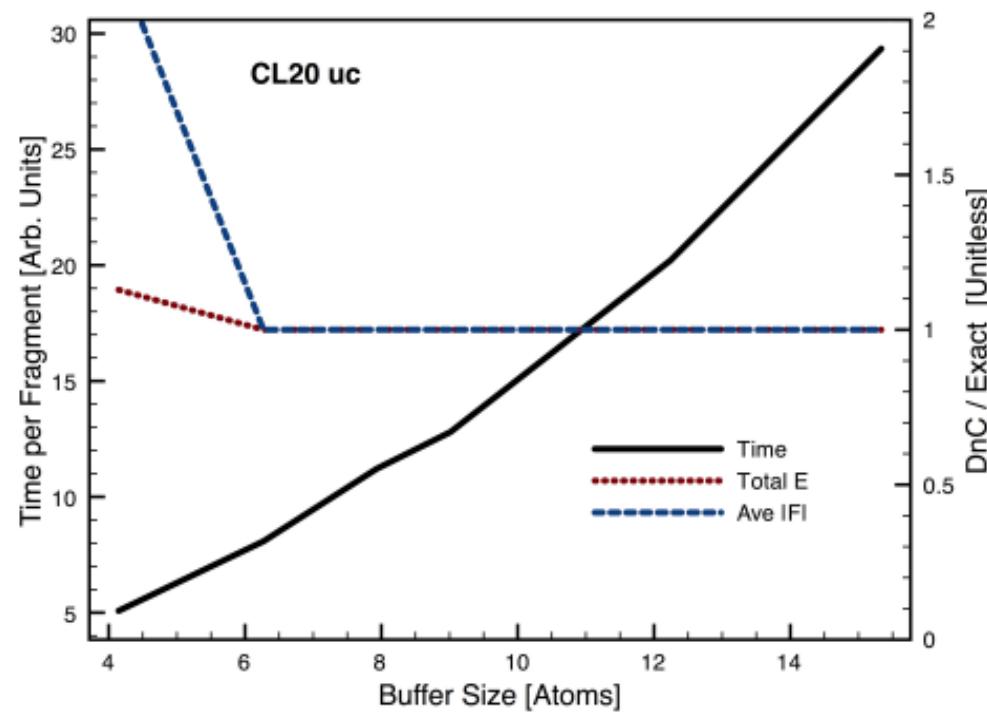
PA20



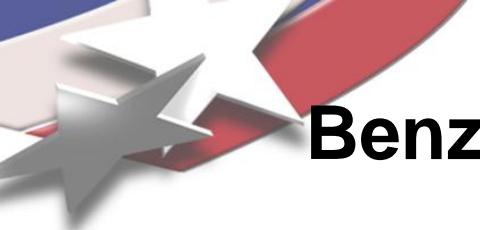
CL20 Molecule



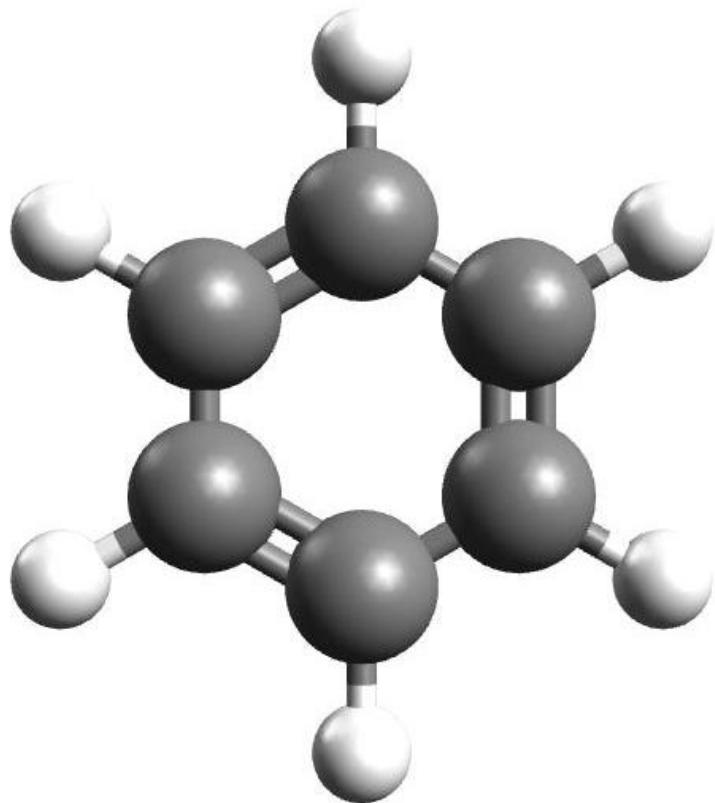
CL20 Cluster



Unit cell of crystalline CL20 with 144 atoms and 156 bonds and convergence tests with respect to the buffer size.



Benzene – Frequencies Expensive in Current Implementation



Ways to Get the Most Out of DnC

- **Typical 1% agreement between full calculation and DnC in total energy seems to require 3x buffer-sizes.**
- **Need to add classical long-range Coulomb effects into F based on information about the subsystems to reduce the need for large buffer sizes**
- **Possible additional improvements possible through modification of chemical potentials of the subsystems**

Work Underway

- Improve convergence for total system and fragments
- Overcome size limits in Pyquante by calling other quantum solvers
- Implement unrestricted DFT formalism
- Parallelize quantum fragment calculations
- Add inter-fragment long range forces

Conclusions

- Divide and conquer offers a powerful new tool to calculate vibrational frequencies as input for phonon band-structure calculations
- Various nanostructures are accessible
- First principles method