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Networks are everywhere

Networks are recognized as the standard tool to model complex interconnected systems.

~ JasonCalacanis
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Need for network models underlie many challenges

Our goal is to design models that can describe a graph with a small number of
parameters. Such models will be instrumental for:
% Insights into
“* generative process
% graph properties (e.g., eigenvalue distribution)
% evolution
% Design and analysis of algorithms and architectures
“ Alternative to worst-case analysis
< Rigorous studies of heuristics
“* Runtime analysis of algorithms
“ Benchmarking computers
“ Comparing graphs
< Sharing of realistic but non-sensitive data
 Statistically significant graph mining
“* Model validation
“* Network inference

In-depth analysis of stochastic Kronecker graphs

Stochastic Kronecker Graph (SKG) has been chosen to generate graphs for the
GRAPH500 supercomputer benchmark. It is favored for small number of parameters,
ease of implementation, full parallelism, an the assumption that graphs generated by
these models resemble real world graphs.

Our analysis of this model provided several important results:

* We proved that SKG cannot generate , Y .+ SKG
power-law or lognormal degree distributions, e Noisy SKG (0.05)
because its degree distribution oscillates Nosly SKG (0.10)
between a lognormal and an exponential.
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* We improved the degree distributions by
a properly adding noise. We theoretically
and empirically showed that this method 10
yields lognormal degree distributions.

Avg. Frequency

o

* SKG creates notably fewer vertices than 10 10'

10
intended. For Graph500 parameters 50-75% Out Degree
of the vertices are isolated. We developed o o
techniques to estimate this number for given model SHONIE)
parameters, and predict which vertices will be isolated. 10°} WE= Housbens
* Core sizes of SKG graphs are significantly lower 10°F— ;\
than those of the graphs they model, which is a sign of ~ s \_
teh poor community structure. .
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Graph500 benchmark is modified to use the
G R noisy SKG model that we have proposed.
Our tools are also being used to design
future benchmarks.

Models for Generating Large Realistic Graphs
Sandia National Laboratories

Requirements for a good model

e Flexibility in degree distribution There is no single distribution that works for all graphs, thus a good
model should be able to generate graphs with a variety of degree distributions.

e Communities and high clustering coefficients Graphs are known to have many

. : : . : Clustering Coefficient
small communities and high clustering coefficients for vertices of all degrees.

(i.e., If (u,v) and (v,w) are edges, probability of (u,w) should be high.) This is a - tz’
major shortcoming of all scalable graph models. CC; = d;
e Small-world diameter Many real graphs have amazingly short distances between ( 2 )

most pairs of vertices.
e Scalability and parallelizability We need to generate extremely large instances in

t. = # triangles at vertex i
d; = degree of vertex i

an efficient way.

The Blocked Two-Level (BTER) Graph Model

BTER Parameters

Degree distribution or a description of
it (e.g., the power-law coefficient)
guides the generation.

Density parameter controls the density
of the smallest blocks.

Density decay parameter controls how
fast the densities of the blocks
decrease with increasing block sizes.

Core idea of BTER

High clustering coefficients for high degree
vertices imply fairly dense clusters. High
clustering coefficients for low degree
vertices imply many small communities.
We explicitly account for this factor.
Skewed degree distributions leave enough
edges after building these dense blocks to
satisfy small world property.
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Partitioning into Community Level Interconnection Level
blocks Add edges between The remaining edges are

added to satisfy the
specified degree
distribution using the
Chung and Lu model. In
this model probability of
an edge is directly
proportional to the
product of the degrees of
its end vertices.

vertices in the same group.
Edges are added uniformly
random within each group
(Erdos Renyi). The density
of the smallest blocks are
set by the density
parameters. Densities of the
blocks decrease with
Increasing community size,
which is controlled by the
decay parameter.

Group vertices into
bins, taking into account
their degrees. The
grouping is assortative
to ensure high clustering
coefficients.

This phase ensures
small-world property and
satisfies the degree
distribution requirement.

This phase ensures high
clustering coefficients.

Advantages of BTER

* |Is not restricted to any particular degree distribution

* Can match the large clustering coefficients observed in real graphs
* Accommodates a community structure with many small communities
* Provides a compact representation of a graph

* Can generate arbitrarily large graphs and is parallelizable

Future Work

* Model improvement Current model is our first-order approximation,and many details needs to
be studied. In particular, we are working on incorporating better community structure models.

* Model validation Our results show that our graphs exhibit many favorable properties. We claim
that any good model should be similar to BTER, and we believe we can show that.

* Evolution We want to extend our model to include how graphs evolve over time.

* Parallel implementation Our model is parallelizable, and we plan to provide such an
implementation for broader adoption of our method.

* Applications Our model has already drawn a lot of interest from the HPC community. We plan
to broaden our impact through other applications (e.g., statistical analysis, anomaly detection).
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BTER accurately regenerates real-world graphs
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Code Availability

The source code for the BTER graph generator is available at
http://csmr.ca.sandia.gov/

Relevant Publications

1.C. Seshadhri, T. Kolda, and A. Pinar, The Blocked Two-Level Erdos Renyi Graph Model,submitted for
journal publication

2.C. Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs," submitted
for journal publication.

3.1. Stanton and A. Pinar, " Constructing and uniform sampling graphs with prescribed joint degree
distribution using Markov Chains," submitted for journal publication.

4.C. Seshadhri, A. Pinar, and T. Kolda, Comparison of Scalable Graph Generation Models, submitted
for conference publication.

5.M. Rocklin, and A. Pinar, ="On Clustering on Graphs with Multiple Edge Types," submitted for joirnal
publication.

6.E. Kayaaslan, A. Pinar, U. Catalyurek, and C. Aykanat, "Hypergraph Partitioning through Vertex
Separators on Graphs", submitted for journal publication.

7.C. Seshadhri, A. Pinar, and T. Kolda, “An In Depth study of Stochastic Kronecker Graphs," to appear
in Proc. Int. Conf. on Data Mining.

8.M. Rocklin and A. Pinar, " Latent Clustering on Graphs with Multiple Edge Types," Proc. 8th
Workshop on Algorithms and Models for the Web Graph (WAW11).

9.1. Stanton and A. Pinar, " Sampling graphs with prescribed joint degree distribution using Markov
Chains, " Proc. ALENEX 11.

10.M. Rocklin and A. Pinar, "Computing an Aggregate Edge-weight function for Clustering Graphs with
Multiple Edge Types", in Proc. 7th Workshop on Algorithms and Models for the Web Graph (WAW10).

Contact Information
For further details about the project, please contact Ali Pinar at apinar@sandia.gov.

Funding Statement

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of
Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.

Disclaimer of Liability

This work of authorship was prepared as an account of work sponsored by an agency of the United States Government.
Accordingly, the United States Government retains a nonexclusive, royalty-free license to publish or reproduce the published form
of this contribution, or allow others to do so for United States Government purposes. Neither Sandia Corporation, the United
States Government, nor any agency thereof, nor any of their employees makes any warranty, express or implied, or assumes any
legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process
disclosed, or represents that its use would not infringe privately-owned rights. Reference herein to any specific commercial
product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its
endorsement, recommendation, or favoring by Sandia Corporation, the United States Government, or any agency thereof. The
views and opinions expressed herein do not necessarily state or reflect those of Sandia Corporation, the United States
Government or any agency thereof.


http://csmr.ca.sandia.gov
http://csmr.ca.sandia.gov
mailto:apinar@sandia.gov
mailto:apinar@sandia.gov

