

Exceptional service in the national interest

Progressive Hedging for Stochastic Economic Dispatch with AC Power Flow

John D. Siirola, Cesar A. Silva-Monroy

13th International Conference on Stochastic Programming
Bergamo, Italy
12 July, 2013

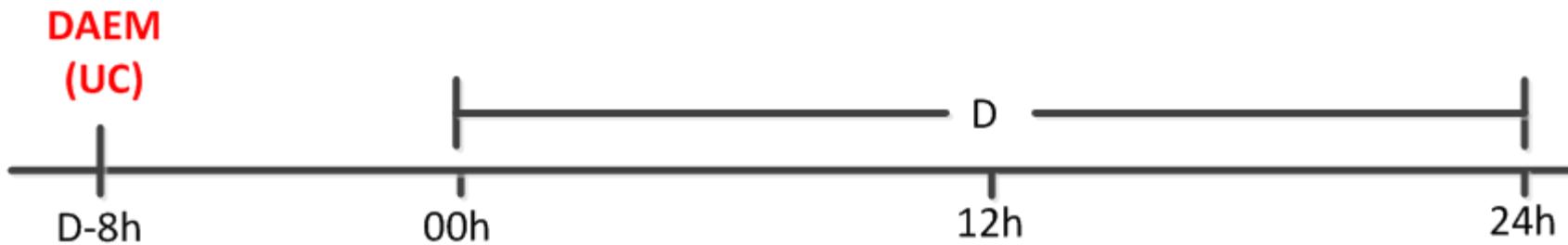
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXX

Outline

- Operating a Power Grid
- ACOPF formulation
 - IV rectangular
 - PQV rectangular
 - PQV polar
- Stochastic ACOPF with Renewable Energy Resources
- Computational Results
- Conclusions

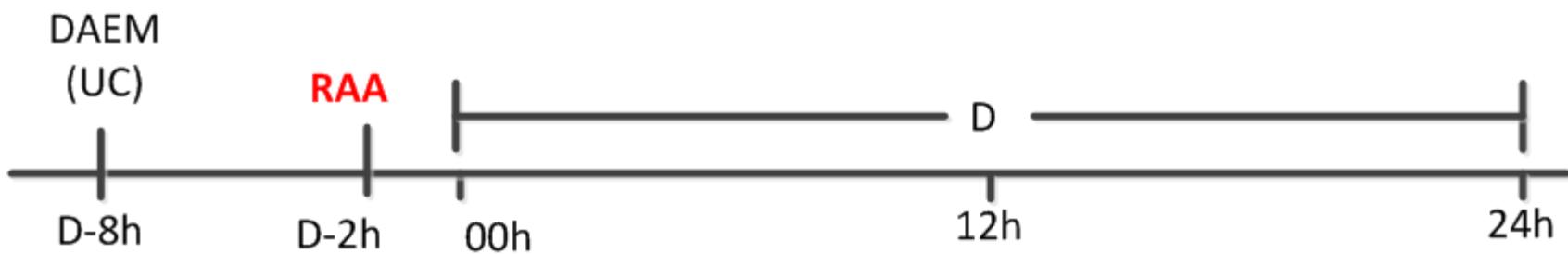
Operating the electric power grid

- Conceptually simple

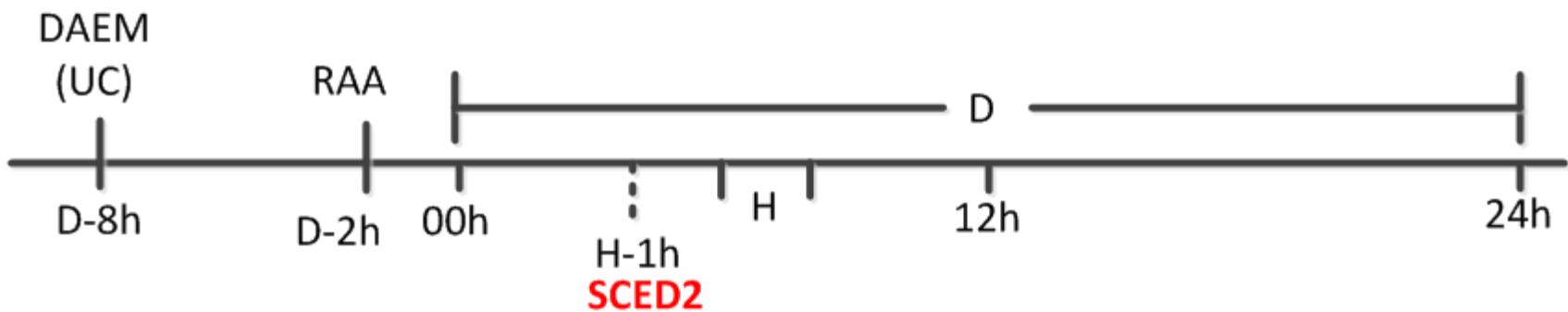

$$\sum demand = \sum generation - \sum losses \quad \forall t \in T$$

- In practice, this is complicated by
 - Dynamic constraints (ramp rates)
 - Transmission limitations
 - Security (reliability) requirements
 - Market constraints

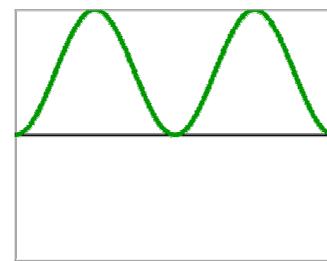
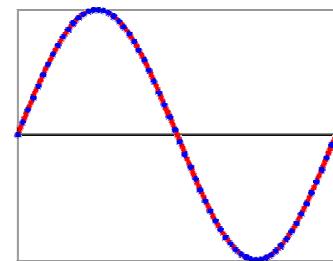
How do utilities implement this in practice?


Day-Ahead Unit Commitment (SCUC D-8h)

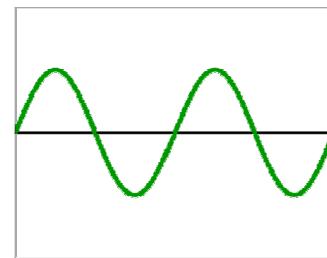
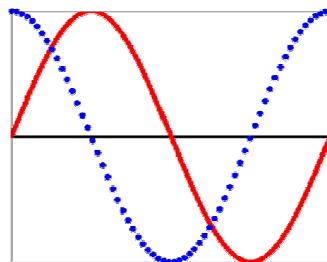
- Day-Ahead Energy Market (DAEM or DAM)
- Clears **demand bids** and **supply offers** at 1600h on the day prior to the operating day
- Produces:
 - Hourly schedules for the next operating day for market participants (i.e., generation and demand)
 - Hourly interchange schedules
 - Hourly day-ahead Locational Marginal Prices (LMPs)
- Some markets optimize reserve requirements simultaneously


Reliability Unit Commitment - RUC (SCUC D-2h)

- Reliability Assessment (Reserve Adequacy Analysis - RAA)
- Minimize additional start-up and no load costs to provide sufficient capacity to satisfy the **forecasted** load plus the operating and replacement reserve requirements
- Clears ISO **forecasted load** at 2200h
- DAM commitments are respected
- Produces:
 - Additional commitments
 - Updated generator dispatch points



Look-Ahead ED (H-1h)

- SCED with ability to bring online fast start resources
- It's intended to meet intra-hour power fluctuations
- Update load and variable generation forecasts
- It produces:
 - Generator setpoints
 - Schedule of fast start units



Power flow in an electric grid

- (Real) Power (P) is the integrated product of voltage (V) and current (I)
 - For AC circuits with only resistive loads

$$P = V_{\text{RMS}} * I_{\text{RMS}}$$

- Reactive loads (inductors & capacitors) shift the I-V phase; worst case:

$$P = 0$$

- Apparent Power (S) is $V_{\text{RMS}} * I_{\text{RMS}}$
 - Governs generation costs and transmission constraints
 - $(S^2 - P^2)^{1/2}$ is the Reactive Power (Q)

Solving Economic Dispatch

- In practice, operators linearize the underlying system
 - Basis of Stochastic UC presented in previous talk
- DCOPF
 - “Small angle” assumption for voltage angle
 - Omit reactive power
 - $P_{1,2} = B (\theta_2 - \theta_1)$
- Yields suboptimal (and frequently infeasible) solutions
 - Actual system voltage angles can exceed 30 degrees

Formulating the ACOPF

- ACOPF: Determine P, Q, V, I for every line, generator in grid
- Multiplicity of formulations
 - Choice of basis (for network constraints) significant:
 - PQV polar: P, Q, V, θ
 - PQV rectangular: P, Q, v^r, v^j
 - IV rectangular: P, Q, i^r, i^j, v^r, v^j
 - Rectangular basis
 - $V \cdot \sin(w + \theta) = v^r \cdot \sin(w) + v^j \cdot \sin(w + \pi/2)$.
 - V, I in the complex plane

ACOPF-PQV (polar)

$$\min \quad c(P^2 + Q^2)$$

$$s.t. \quad P_n = \sum_{mk} V_n V_m (G_{nmk} \cos \theta_{nm} + B_{nmk} \sin \theta_{nm}) + P_n^d$$

$$Q_n = \sum_{mk} V_n V_m (G_{nmk} \sin \theta_{nm} - B_{nmk} \cos \theta_{nm}) + Q_n^d$$

$$P^{\min} \leq P \leq P^{\max}$$

$$Q^{\min} \leq Q \leq Q^{\max}$$

$$V^{\min} \leq V \leq V^{\max}$$

$$\theta_{nm}^{\min} \leq \theta_n - \theta_m \leq \theta_{nm}^{\max}$$

ACOPF-PQV (rectangular)

min

$$c(P + jQ)$$

s.t.

$$P + jQ = V \bullet Y^* V^* + P^d + jQ^d$$

$$P^{\min} \leq P \leq P^{\max}$$

$$Q^{\min} \leq Q \leq Q^{\max}$$

$$p_{nmk}^2 + q_{nmk}^2 \leq (s_k^{\max})^2$$

$$(V^{\max})^2 \leq V^r \bullet V^r + V^j \bullet V^j \leq (V^{\max})^2$$

$$\theta_{nm}^{\min} \leq \arctan\left(\frac{v_n^j}{v_n^r}\right) - \arctan\left(\frac{v_m^j}{v_m^r}\right) \leq \theta_{nm}^{\max}$$

ACOPF-IV (rectangular)

min

$$c(P + jQ)$$

s.t.

$$P = V^r \bullet I^r + V^j \bullet I^j + P^d$$

$$Q = V^j \bullet I^r - V^r \bullet I^j + Q^d$$

$$P^{\min} \leq P \leq P^{\max}$$

$$Q^{\min} \leq Q \leq Q^{\max}$$

$$(i_{nmk})^2 \leq (i_k^{\max})^2$$

$$(V^{\max})^2 \leq V^r \bullet V^r + V^j \bullet V^j \leq (V^{\max})^2$$

$$\theta_{nm}^{\min} \leq \arctan\left(\frac{v_n^j}{v_n^r}\right) - \arctan\left(\frac{v_m^j}{v_m^r}\right) \leq \theta_{nm}^{\max}$$

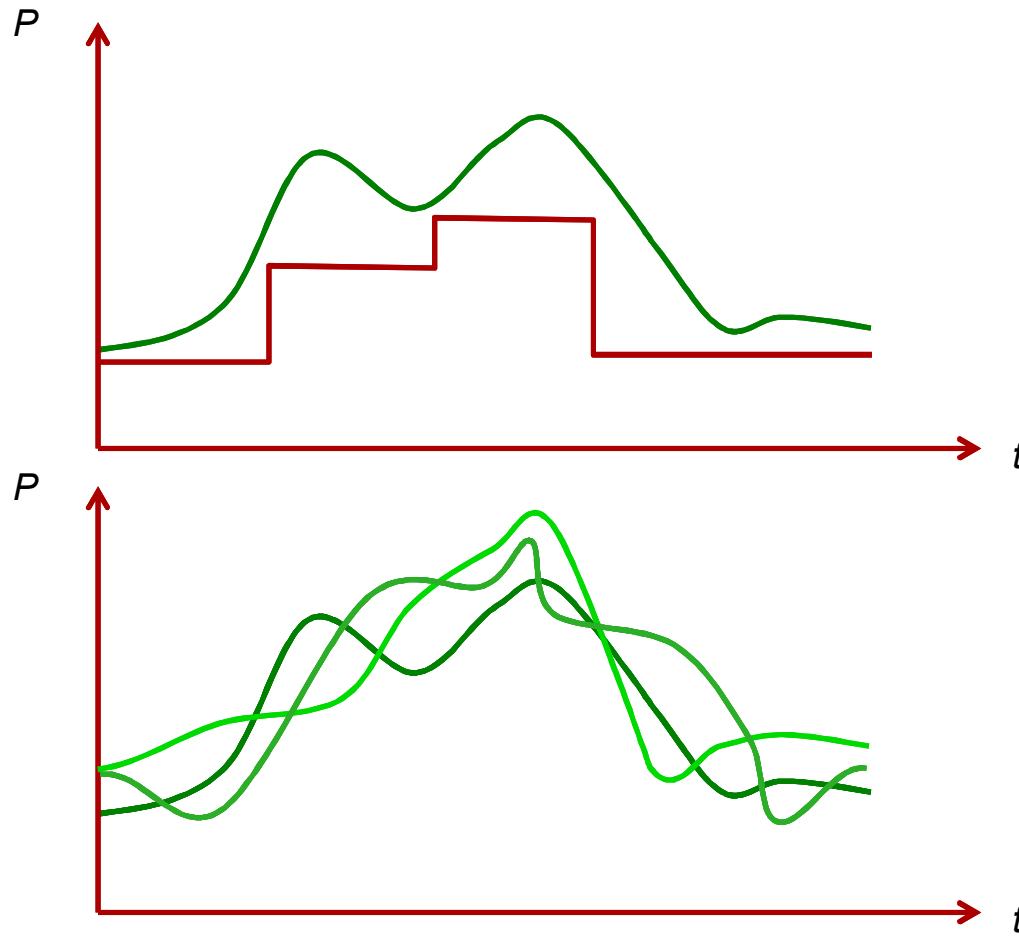
Stochastic ACOPF Motivation

- Increased penetration of renewable energy impacts fossil-fuel plants, in particular unit cycling.
- Units that are designed for base-load operation are being employed to help absorb renewable plants variability
- Consequences are increased O&M costs and higher forced outage rates
- How to dispatch generation to minimize the cycling of slow generators while taking into account the stochastic nature of wind and solar plants?

Stochastic ACOPF Formulation

- Objective

$$\min \sum_{s \in S} p_s \cdot C(P)$$


- where

$$C(P) = a + bP + cP^2 + kP_{\Delta}^2$$

$$P_{\Delta}(t) = P(t) - P(t-1) \quad \forall t \in T$$

- First-stage variables are the generator set points at the first time step $P_{ed} = P(1)$
- Second-stage variables are the ramping of the units throughout time P_{Δ} s.t. $P(t) = P_{ed} + \sum_{i=0}^t P_{\Delta}(i)$
- Base load units have high k values
- Peakers have zero k value

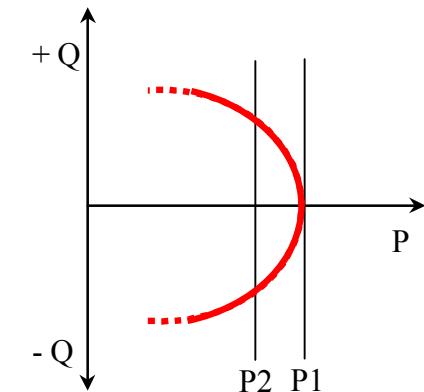
Stochastic ACOPF Illustration

Adding Renewables to ACOPF

- Renewable plants are a significant source of stochasticity
- They do use no “fuel” to provide power = No changes to objective function
- Renewables are modeled as “must-take” resources: negative real power loads

$$\sum_{g \in G_n} P_g + \sum_{w \in W_n} P_w + \sum_{l \in L_n} P_l - \sum_{m \in M_n} P_m - \sum_{d \in D_n} P_d = 0 \quad \forall n \in N, t \in T$$

- where
 - G_n are the generators at node n
 - W_n are the renewable generators at node n
 - L_n are the lines connected into node n
 - M_n are the lines out of node n


Adding Renewables to ACOPF

- Modern renewable power plants can control their reactive power output, thus Q_w is a variable

$$\sum_{g \in G_n} Q_g + \sum_{w \in W_n} Q_w + \sum_{l \in L_n} Q_l - \sum_{m \in M_n} Q_m - \sum_{d \in D_n} Q_d = 0 \quad \forall n \in N, t \in T$$

- Additionally, reactive power limits are given by their power electronics interface rating (MVA)

$$P_w^2 + Q_w^2 \leq MVA_{rating}^2 \quad \forall w \in W, t \in T$$

Test Case Results

- Benefit Analysis for one representative day
 - Stochastic ED
 - Total fixed cost: \$341,808.28
 - Total expected production cost: \$188,434.03
 - Total expected load shed: 12.75 MWh
 - Deterministic ED
 - Total fixed cost: \$286,944.62
 - Total expected production cost: \$270,058.91
 - Total expected load shedding: 418.84 MWh
 - Total expected savings: \$26,761.22

Computational Results

- Test instance
 - IEEE 118, 300
 - Stochastic wind, 100 scenarios
- Extensive form
 - IPOPT, after 1 day of CPU on a 16-core workstation
 - No feasible solution found
- PH, 20 iterations, serial
 - ~14 hours, 2.5% optimality gap
- PH, 20 iterations, parallel (100 nodes)
 - ~15 minutes, 2.5% optimality gap
- PH, 20 iterations, parallel with bundling (2 scenarios/bundle)
 - ~15 minutes, 1.5% optimality gap

QUESTIONS

