
Photos placed in
horizontal position
with even amount

of white space
 between photos

and header

Photos placed in horizontal
position

with even amount of white
space

 between photos and header

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin
Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND NO. 2011-XXXXP

Lightweight	
 Distributed	

Metric	
 Service	
 (LDMS)	

Run-­‐8me	
 Resource	
 U8liza8on	
 Monitoring	

Sandia National Laboratories,
 Scientific Computing Systems, Albuquerque, NM

And
Open Grid Computing, Austin, TX

SAND2013-6521C

Overview	

§  Mo8va8on	

§  High-­‐level	
 Architecture	

§  Performance	

§  Usage	

§  Advanced	
 Deployment	
 Features	

§  Summary	

Mo8va8on	

Gain	
 insight	
 into	
 resource	
 u8liza8on/boIlenecks	
 (e.g.,	
 network	

bandwidth/hotspots,	
 CPU	
 u8liza8on,	
 Memory	
 footprint/
bandwidth)	

§  Intelligent	
 job	
 placement	

§  Run-­‐8me	
 workload	
 par88oning/adapta8on	

§  Historical	
 comparison	

§  Anomaly	
 detec8on	

Monitoring	
 System	
 and	
 Applica8on	

Resource	
 U8liza8on	
 	

§  Typical	
 monitoring	
 systems	
 target	
 failure	
 detec8on,	
 up8me,	
 trend	
 overview:	
 	

§  Informa8on	
 targeted	
 to	
 system	
 administra8on	

§  Collec8on	
 intervals	
 of	
 minutes	

§  Rela8vely	
 high	
 overhead	
 (both	
 compute	
 node	
 and	
 aggregators)	

§  Applica8on	
 profiling/debugging/tracing	
 tools:	

§  Collec8on	
 intervals	
 of	
 sub	
 seconds	
 (even	
 sub-­‐millisecond)	

§  Typically	
 requires	
 linking,	
 not	
 run	
 under	
 real-­‐world	
 condi8ons	
 (i.e.,	
 tools	
 perturb	
 the	

applica8on	
 profile)	

§  Limits	
 on	
 scale	

§  Don’t	
 account	
 for	
 external	
 applica8ons	
 compe8ng	
 for	
 the	
 same	
 resource	

§  Lightweight	
 Distributed	
 Metric	
 Service	
 (LDMS):	
 	

§  Con8nuous	
 data	
 collec8on,	
 transport,	
 storage	
 as	
 a	
 system	
 service	

§  Targets	
 system	
 administrators,	
 users,	
 and	
 applica8ons	

§  Enables	
 collec8on	
 of	
 a	
 reasonably	
 large	
 number	
 of	
 metrics	
 with	
 collec8on	
 periods	
 that	

enable	
 job-­‐centric	
 resource	
 u8liza8on	
 analysis	
 and	
 run-­‐8me	
 anomaly	
 detec8on	

§  Variable	
 collec8on	
 period	
 (~seconds)	

§  On-­‐node	
 interface	
 to	
 run-­‐8me	
 data	

§  Mul8ple	
 concurrent	
 data	
 clients	
 and	
 installa8ons	

LDMS	
 High	
 Level	
 Overview	

* Only the current data is
retained on-node

LDMS	
 Func8onal	
 Overview	

§  Data	
 is	
 bundled	
 into	
 “Metric	
 Sets”	
 –	
 “related”	
 informa8on	

§  Metric	
 Sets	
 have	
 associated	
 Data	
 and	
 Meta-­‐data	
 and	
 include	

genera8on	
 numbers	
 for	
 both	

§  Meta-­‐data	
 is	
 only	
 transmiIed	
 during	
 ini8al	
 setup	
 and	
 when	
 change	
 occurs	

§  Run-­‐8me	
 (Re)Configura8on:	

§  Run-­‐8me	
 Collec8on	
 plugin	
 add,	
 start,	
 stop	

§  Add	
 new	
 collec8on	
 components	

§  Start	
 collec8on	
 –	
 begin	
 scheduling	
 data	
 collec8on	
 and	
 make	
 data	
 visible	
 to	

queries	

§  Stop	
 collec8on	
 –	
 stop	
 scheduling	
 data	
 collec8on,	
 last	
 data	
 set	
 s8ll	
 visible	
 to	

queries	
 –	
 no	
 CPU	
 overhead	
 associated	
 with	
 this	
 as	
 no	
 collec8on	
 scheduled	
 	

§  Modify	
 collec8on	
 frequency	
 on	
 metric	
 set	
 basis	

§  Run-­‐8me	
 Storage	
 plugin	
 add,	
 start,	
 stop	

§  Insert	
 to	
 new	
 data	
 storage	
 containers	

§  Add	
 new	
 metrics	
 to	
 the	
 store	

§  Run-­‐8me	
 Add	
 Hosts	
 to	
 Aggregator	

§  Data	
 Queries	
 can	
 be	
 either	
 host	
 local	
 or	
 remote	

§  Socket	
 or	
 RDMA	
 transport	
 op8ons	

LDMS Architecture:
Modular Plugin Interface for Data
Collectors, Transport, and Storage

LDMS	
 Metric	
 Sets	
 Example	

shu$le-­‐cray.ran.sandia.gov_1/meminfo	

§  U64	
 160032	
 	
 	
 	
 	
 	
 	
 	
 	
 MemFree	

§  U64	
 181728	
 	
 	
 	
 	
 	
 	
 	
 	
 Buffers	

§  U64	
 3443332	
 	
 	
 	
 	
 	
 	
 Cached	

§  U64	
 33076	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SwapCached	

§  U64	
 2987544	
 	
 	
 	
 	
 	
 	
 Ac8ve	

shu$le-­‐cray.ran.sandia.gov_1/procstatu;l	

§  U64	
 1826564	
 	
 	
 	
 	
 	
 	
 cpu0_user_raw	

§  U64	
 699631	
 	
 	
 	
 	
 	
 	
 	
 	
 cpu0_sys_raw	

§  U64	
 663843760	
 	
 cpu0_idle_raw	

§  U64	
 201018	
 	
 	
 	
 	
 	
 	
 	
 	
 cpu0_iowait_raw	

	

shu$le-­‐cray.ran.sandia.gov_1/vmstat	

§  U64	
 40008	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_free_pages	

§  U64	
 122286	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_interac8ve_anon	

§  U64	
 321902	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_ac8ve_anon	

§  U64	
 465532	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_inac8ve_file	

§  U64	
 424986	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_ac8ve_file	

	

Metric sets:
•  (datatype, value, metricname)

tuples
•  optional per metric user

metadata e.g., component id
API:

•  ldms_get_set
•  ldms_get_metric
•  ldms_get_u64

•  Same API for on-node and off-
node (aggregator) transport

Metric	
 Set	
 Format	

§  Meta	
 data	
 genera8on	
 number	

bumped	
 whenever	
 metrics	

are	
 added	
 or	
 removed	

§  Data	
 genera8on	
 number	

changes	
 whenever	
 a	
 value	

changes	

§  Meta	
 data	
 genera8on	
 number	

is	
 included	
 with	
 metric	
 data	
 to	

detect	
 when	
 cached	
 local	

meta-­‐data	
 is	
 stale	

Metric Set Memory

Metric Meta Data
•  Meta Generation Number

Metric Descriptor
•  Name
•  Type
•  Offset

Metric Descriptor
•  Name
•  Type
•  Offset

Metric Descriptor
•  Name
•  Type
•  Offset

Metric Data
•  Meta Generation Number
•  Data Generation Number

Value Value Value

Value Value

Current	
 Data	
 Collector/Storage	
 Plugins	

§  /proc
§  meminfo, vmstat, stat, interrupts, pid/(stat, statm)
§  kgnilnd	
 (Cray	
 specific)	

§  Gem_link_perf	
 (Cray	
 specifc)	

§  Gemini	
 Tile	
 and	
 NIC	
 counters	
 w/	
 link	
 aggrega8on	

§  perf_event	

§  Generic	
 interface	
 for	
 acquisi8on	
 of	
 hardware	
 counters	
 e.g.,	
 data	
 cache	

misses,	
 instruc8on	
 cache	
 misses,	
 hyper-­‐transport	
 bandwidth	
 (AMD)	

§  rsyslog	
 (Cray	
 specific)	

§  SEDC	
 (RAS)	
 and	
 ALPSdata	
 	

§  lmsensors	
 (/sys)	

§  Temperatures,	
 fan	
 speeds,	
 voltages	

§  Storage:	
 Flakile,	
 CSV,	
 SQL,	
 NoSQL,	
 Custom	

	

	

Overhead
Collection Interval of 1 second on Cray XE6

•  CPU overhead increases
with number of metrics in a
metric set for a particular
gathering mechanism
(e.g., /proc, /sys readers,
ioctl calls)

•  gemctrs – ioctl as opposed
to reading from /proc.
gemctrs with ~300 metrics
has < 1/3rd the overhead of
procstatutil but has
~twice the number of
metrics

Overhead Summary
CPU Overhead
•  Mostly due to data collection

vs. transport
•  RDMA (UGNI) has none past

startup
•  SOCK significant if collection

overhead is small (e.g., small
dataset)

Memory Footprint
•  RDMA has a larger memory

footprint than SOCK
•  Except for gemctrs, sampler

overhead, over ldmsd alone is
about the same

USAGE	

Data	
 Collec8on	
 and	
 Analysis	
 Tools	
 as	
 a	

System	
 Service	

§  LDMS	
 data	
 collec8on	
 runs	
 as	
 a	
 system	
 service	

§  Run-­‐8me	
 adjustment	
 of	
 data	
 collected,	
 frequency	

§  Requires	
 NO	
 changes	
 or	
 relinking	
 to	
 the	
 applica8on	

§  Per-­‐user	
 LDMS	
 instances*	

§  Run-­‐8me	
 feed	
 of	
 resource	
 u8liza8on	
 informa8on	

§  Early	
 warning	
 of	
 problems	

§  Provide	
 job	
 profile	
 data	
 dumps	
 on	
 a	
 per-­‐user	
 per-­‐job	
 basis	

§  Analysis	
 and	
 plomng	
 tools	

§  Users	
 can	
 examine	
 performance	
 across	
 runs	

§  Post-­‐mortem	
 diagnosis	

§  On-­‐node	
 API	
 for	
 data	
 access	

§  Can	
 be	
 used	
 for	
 computa8onal	
 steering,	
 dynamic	
 alloca8on	

Temporal	
 Job	
 Profile	

(Per-­‐job	
 per-­‐component	
 graphical	
 tools	
 extract	
 data	
 from	
 the	
 database	
 dump)	

Scheduler reports NODE_FAIL end state

Sta8s8cal	
 Profiling	
 Tools	

(Ac8ve	
 Memory)	

•  Descriptive statistics, high/low water mark, per node and per job basis
•  One node averages %50 more active memory over job lifetime than other

nodes
•  High maximum active memory near job end in all nodes compared to job

average, available memory

Mul8-­‐node:	
 General	
 Behavior	

•  All nodes similarly
behaved but with offset

•  Problem is initial node
condition

Data Storage Options Enable User’s
Choice of Analysis Tools

Example: JavaScript Web Visualizations of MySQL data

Resource-­‐Aware	
 Applica8ons	

§  �Performance	
 of	
 an	
 applica8on	
 depends	
 on	
 capabili8es	
 of	
 the	
 hardware	

and	
 system	
 sopware	
 and	
 on	
 how	
 the	
 applica8on	
 u8lizes	
 resources.	
 	

§  U8lize	
 node	
 level	
 monitoring	
 informa8on	
 to	
 make	
 run-­‐8me	
 load	
 balancing	

decisions.	

•  SIERRA
Applications
repartition using
Zoltan

•  Augmented Zoltan
to call LDMS for
resource utilization
data via on-node
interface and use
that information in
repartitioning
calculation

High Fidelity Data Collection and Transport Service Applied to the Cray XE6/XK6 (CUG 2013)

ADVANCED	
 DEPLOYMENT	

FEATURES	

Cielo:	
 Data	
 streaming	
 across	
 DISCOM	

FY11 ASC L2 Milestone:
Develop Feedback System for Intelligent Dynamic Resource Allocation to Improve Application Performance

Suppor8ng	
 Security	
 Postures:	

Asymmetric	
 Network	
 Set-­‐up	

Concurrent	
 Administrator	
 and	
 User	

LDMS	
 Instances	
 	

§  Admin:	
 Con8nuous	
 system-­‐wide	
 LDMS	
 deployment	

suppor8ng	
 administrator	
 data	
 of	
 interest	
 and	
 data	
 rates	

§  Users:	
 transient	
 job-­‐wide	
 LDMS’s	
 launched	
 by	
 the	
 Resource	

Manager	

§  User	
 determines	
 metrics	
 and	
 frequency	
 based	
 on	
 interest	
 and	
 acceptable	

performance	
 impact	

§  User	
 can	
 adjust	
 metrics	
 and	
 rate	
 collected	
 during	
 run	
 8me	
 (e.g.,	
 change	

rates,	
 metrics	
 based	
 on	
 what	
 is	
 happening	
 in	
 the	
 computa8on).	

	

Collaboration with LANL:
Dave Montoya, Mike Mason, Tim Randles, Cory Leuninghoener, Craig Idler

Security	
 	

§  Reliably	
 restrict	
 access	
 to	
 data	

§  Where	
 are	
 processes	
 running	
 and	
 who	
 is	
 running?	

§  Compute	
 nodes	
 –	
 root/privileged	
 user,	
 user	
 running	
 on	
 node	
 	

§  Storage	
 servers	
 –	
 root/privileged	
 user	

§  Service	
 nodes	
 –	
 root/privileged	
 user	

§  What	
 ports	
 would	
 be	
 open	
 and	
 on	
 what	
 servers	

§  Compute	
 nodes	
 –	
 privileged	
 port,	
 unprivileged	
 port	
 for	
 user	

§  Storage	
 servers	
 –	
 privileged	
 port	

§  Service	
 nodes	
 –	
 privileged	
 port	

§  Privilege	

§  Authen8ca8on	
 –	
 Unix	
 AUTH	

§  Daemons	
 run	
 as	
 root	
 or	
 user/group	
 ldms:ldms	

§  Communica8on	

§  Trusted	
 Networks	
 (e.g.	
 uGNI)	

§  Privileged	
 port	
 or	
 other	
 access	
 mechanism	
 (e.g.	
 PTags	
 in	
 uGNI)	
 	

§  Un-­‐trusted	
 Networks	

§  Accessible	
 through	
 LDMS	
 secure	
 socket	
 (SSL)	
 transport	

§  Authen8ca8on	
 through	
 private/public	
 key	
 +	
 Unix	
 AUTH	

§  Data	
 are	
 encrypted	
 via	
 SSL	

	

Summary	

§  Lightweight	
 Distributed	
 Metric	
 Service	
 (LDMS):	

§  System	
 service	
 that	
 provides	
 low-­‐overhead	
 collec8on	
 and	
 storage	
 of	

high-­‐fidelity	
 system	
 related	
 data	
 	

§  Con8nuous	
 job	
 and	
 system	
 resource	
 u8liza8on	
 profiling	

§  Supply	
 to	
 the	
 user	
 full	
 data	
 dumps,	
 graphs,	
 sta8s8cs	
 etc	

§  Resource	
 u8liza8on	
 informa8on	
 in	
 actual	
 run	
 condi8ons	

§  On-­‐node	
 interface	
 for	
 run-­‐8me	
 applica8on	
 interac8on	

§  Developing	
 produc8on	
 architecture	
 to	
 launch	
 per-­‐job	
 LDMS	

instances	

§  User	
 dynamically	
 selects	
 metric	
 sets	
 of	
 interest	
 and	
 frequency	
 based	

on	
 interest	
 and	
 acceptable	
 performance	
 impact	

§  Open	
 Source	

§  hIp://ovis.ca.sandia.gov	

§  ovis@sandia.gov	

EXTRA	
 SLIDES	

Scalable	
 HPC	
 Informa8on	
 Processing	

Data	

Collec8on	

Distributed	

Transport	

Parallel	

Run-­‐8me	

Analysis	

Environmental	

sensors	

Hardware	

counters	

Proc	
 FS	

Power	

Applica8on	

Parallel	

Post	

Processing	

Distributed	

Storage	
 Distributed	

Storage	
 Distributed	

Storage	

Distributed	

Transport	
 Distributed	

Transport	

Data	

Collec8on	
 Data	

Collec8on	

Admin	

Interface	

CLI/GUI	

Data	

Browser	

for	
 Admin	

&	

Applica8on	

User	

System	

Logs	
 Resource	

Manager	

Logs	

System CPU Utilization

•  8310 Cores during idle on Cray XE6

Non-­‐Voluntary	
 Context	
 Switches	

§ 	
 From	
 8310	
 processor	
 applica8on	
 run	
 on	
 Cray	
 XE6	

LDMS	
 MetricSets	
 Example	

ldms_ls	
 -­‐h	
 localhost	
 -­‐x	
 sock	
 -­‐p	
 60000:	
 (Lists	
 the	
 metric	
 sets)	

	

§  shuIle-­‐cray.ran.sandia.gov_1/meminfo	

§  shuIle-­‐cray.ran.sandia.gov_1/procstatu8l	

§  shuIle-­‐cray.ran.sandia.gov_1/vmstat	

LDMS	
 MetricSets	
 Example	

ldms_ls	
 -­‐h	
 localhost	
 -­‐x	
 sock	
 -­‐p	
 60000	
 –v	

	

§  shuIle-­‐cray.ran.sandia.gov_1/vmstat	

§  	
 METADATA	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Size	
 :	
 6954	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Inuse	
 :	
 3792	

§  	
 	
 	
 	
 Metric	
 Count	
 :	
 97	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 GN	
 :	
 98	

§  	
 DATA	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Size	
 :	
 808	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Inuse	
 :	
 808	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 GN	
 :	
 105410	

§  	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

§  shuIle-­‐cray.ran.sandia.gov_1/procstatu8l	

§  	
 METADATA	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Size	
 :	
 7805	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Inuse	
 :	
 4192	

§  	
 	
 	
 	
 Metric	
 Count	
 :	
 118	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 GN	
 :	
 119	

§  	
 DATA	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Size	
 :	
 976	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Inuse	
 :	
 976	

§  	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 GN	
 :	
 128468	

§  	
 -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	

LDMS	
 MetricSets	
 Example	

ldms_ls	
 -­‐h	
 localhost	
 -­‐x	
 sock	
 -­‐p	
 60000	
 –l:	

	

§  shu$le-­‐cray.ran.sandia.gov_1/meminfo	

§  U64	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 component_id	

§  U64	
 160032	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 MemFree	

§  U64	
 181728	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Buffers	

§  U64	
 3443332	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Cached	

§  U64	
 33076	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 SwapCached	

§  U64	
 2987544	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 Ac8ve	

§  shu$le-­‐cray.ran.sandia.gov_1/procstatu;l	

§  U64	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 component_id	

§  U64	
 1826564	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cpu0_user_raw	

§  U64	
 699631	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cpu0_sys_raw	

§  U64	
 663843760	
 	
 	
 	
 	
 	
 	
 	
 cpu0_idle_raw	

§  U64	
 201018	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 cpu0_iowait_raw	

§  shu$le-­‐cray.ran.sandia.gov_1/vmstat	

§  U64	
 1	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 component_id	

§  U64	
 40008	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_free_pages	

§  U64	
 122286	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_inac8ve_anon	

§  U64	
 321902	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_ac8ve_anon	

§  U64	
 465532	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_inac8ve_file	

§  U64	
 424986	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 nr_ac8ve_file	

RDMA	
 Transport	
 Overview	

§  Metric	
 Sets	
 reside	
 in	
 pinned,	
 registered	
 memory.	

§  Metric	
 Sets	
 may	
 reside	
 in	
 either	
 kernel	
 or	
 user	
 memory	

§  Metric	
 Set	
 Remote	
 Key/Virtual	
 Address	
 is	
 shared	
 with	
 remote	

peer	
 and	
 returned	
 with	
 metric	
 set	
 directory	
 informa8on	

§  Metric	
 Set	
 contents	
 are	
 ‘mirrored’	
 on	
 consumer	

§  Metric	
 Set	
 contents	
 are	
 made	
 consistent	
 with	
 an	
 RDMA	
 READ	

that	
 is	
 issued	
 through	
 ldms_update	
 	

Security	

Provide	
 Compa8bility	
 with	
 security	
 postures	
 of	
 plakorms	

	
 	

§  Reliably	
 restrict	
 access	
 to	
 data	

§  Where	
 are	
 processes	
 running	
 and	
 who	
 is	
 running?	

§  Compute	
 nodes	
 –	
 root/privileged	
 user,	
 user	
 running	
 on	
 node	
 	

§  Storage	
 servers	
 –	
 root/privileged	
 user	

§  Service	
 nodes	
 –	
 root/privileged	
 user	

§  What	
 ports	
 would	
 be	
 open	
 and	
 on	
 what	
 servers	

§  Compute	
 nodes	
 –	
 privileged	
 port,	
 unprivileged	
 port	
 for	
 user	

§  Storage	
 servers	
 –	
 privileged	
 port	

§  Service	
 nodes	
 –	
 privileged	
 port	

§  Prefer	
 not	
 to	
 run	
 as	
 root	
 –	
 have	
 a	
 trust	
 rela8onship	
 between	
 source	

and	
 consumer	
 –	
 currently	
 inves8ga8ng	
 op8ons	

	

Security	

§  Privilege	

§  Authen8ca8on	
 –	
 Unix	
 AUTH	

§  Daemons	
 run	
 as	
 root	
 or	
 user/group	
 ovis:ovis	

§  Communica8on	

§  Trusted	
 Networks	
 (e.g.	
 uGNI)	

§  These	
 networks	
 must	
 be	
 physically	
 secured	
 from	
 un-­‐trusted	
 clients.	

§  Privileged	
 port	
 or	
 other	
 access	
 mechanism	
 (e.g.	
 PTags	
 in	
 uGNI)	
 	

§  Un-­‐trusted	
 Networks	

§  Accessible	
 through	
 LDMS	
 secure	
 socket	
 (SSL)	
 transport	

§  Authen8ca8on	
 through	
 private/public	
 key	
 +	
 Unix	
 AUTH	

§  Data	
 are	
 encrypted	
 via	
 SSL	

37	

