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Mo8va8on	
  

Gain	
  insight	
  into	
  resource	
  u8liza8on/boIlenecks	
  (e.g.,	
  network	
  
bandwidth/hotspots,	
  CPU	
  u8liza8on,	
  Memory	
  footprint/
bandwidth)	
  
§  Intelligent	
  job	
  placement	
  
§  Run-­‐8me	
  workload	
  par88oning/adapta8on	
  
§  Historical	
  comparison	
  
§  Anomaly	
  detec8on	
  



Monitoring	
  System	
  and	
  Applica8on	
  
Resource	
  U8liza8on	
  	
  
§  Typical	
  monitoring	
  systems	
  target	
  failure	
  detec8on,	
  up8me,	
  trend	
  overview:	
  	
  

§  Informa8on	
  targeted	
  to	
  system	
  administra8on	
  
§  Collec8on	
  intervals	
  of	
  minutes	
  
§  Rela8vely	
  high	
  overhead	
  (both	
  compute	
  node	
  and	
  aggregators)	
  

§  Applica8on	
  profiling/debugging/tracing	
  tools:	
  
§  Collec8on	
  intervals	
  of	
  sub	
  seconds	
  (even	
  sub-­‐millisecond)	
  
§  Typically	
  requires	
  linking,	
  not	
  run	
  under	
  real-­‐world	
  condi8ons	
  (i.e.,	
  tools	
  perturb	
  the	
  

applica8on	
  profile)	
  
§  Limits	
  on	
  scale	
  
§  Don’t	
  account	
  for	
  external	
  applica8ons	
  compe8ng	
  for	
  the	
  same	
  resource	
  

§  Lightweight	
  Distributed	
  Metric	
  Service	
  (LDMS):	
  	
  
§  Con8nuous	
  data	
  collec8on,	
  transport,	
  storage	
  as	
  a	
  system	
  service	
  
§  Targets	
  system	
  administrators,	
  users,	
  and	
  applica8ons	
  
§  Enables	
  collec8on	
  of	
  a	
  reasonably	
  large	
  number	
  of	
  metrics	
  with	
  collec8on	
  periods	
  that	
  

enable	
  job-­‐centric	
  resource	
  u8liza8on	
  analysis	
  and	
  run-­‐8me	
  anomaly	
  detec8on	
  
§  Variable	
  collec8on	
  period	
  (~seconds)	
  
§  On-­‐node	
  interface	
  to	
  run-­‐8me	
  data	
  
§  Mul8ple	
  concurrent	
  data	
  clients	
  and	
  installa8ons	
  



LDMS	
  High	
  Level	
  Overview	
  

* Only the current data is 
retained on-node 



LDMS	
  Func8onal	
  Overview	
  
§  Data	
  is	
  bundled	
  into	
  “Metric	
  Sets”	
  –	
  “related”	
  informa8on	
  
§  Metric	
  Sets	
  have	
  associated	
  Data	
  and	
  Meta-­‐data	
  and	
  include	
  

genera8on	
  numbers	
  for	
  both	
  
§  Meta-­‐data	
  is	
  only	
  transmiIed	
  during	
  ini8al	
  setup	
  and	
  when	
  change	
  occurs	
  

§  Run-­‐8me	
  (Re)Configura8on:	
  
§  Run-­‐8me	
  Collec8on	
  plugin	
  add,	
  start,	
  stop	
  

§  Add	
  new	
  collec8on	
  components	
  
§  Start	
  collec8on	
  –	
  begin	
  scheduling	
  data	
  collec8on	
  and	
  make	
  data	
  visible	
  to	
  

queries	
  
§  Stop	
  collec8on	
  –	
  stop	
  scheduling	
  data	
  collec8on,	
  last	
  data	
  set	
  s8ll	
  visible	
  to	
  

queries	
  –	
  no	
  CPU	
  overhead	
  associated	
  with	
  this	
  as	
  no	
  collec8on	
  scheduled	
  	
  
§  Modify	
  collec8on	
  frequency	
  on	
  metric	
  set	
  basis	
  

§  Run-­‐8me	
  Storage	
  plugin	
  add,	
  start,	
  stop	
  
§  Insert	
  to	
  new	
  data	
  storage	
  containers	
  
§  Add	
  new	
  metrics	
  to	
  the	
  store	
  

§  Run-­‐8me	
  Add	
  Hosts	
  to	
  Aggregator	
  
§  Data	
  Queries	
  can	
  be	
  either	
  host	
  local	
  or	
  remote	
  
§  Socket	
  or	
  RDMA	
  transport	
  op8ons	
  



LDMS Architecture:  
Modular Plugin Interface for Data 
Collectors, Transport, and Storage 



LDMS	
  Metric	
  Sets	
  Example	
  

shu$le-­‐cray.ran.sandia.gov_1/meminfo	
  
§  U64	
  160032	
  	
  	
  	
  	
  	
  	
  	
  	
  MemFree	
  
§  U64	
  181728	
  	
  	
  	
  	
  	
  	
  	
  	
  Buffers	
  
§  U64	
  3443332	
  	
  	
  	
  	
  	
  	
  Cached	
  
§  U64	
  33076	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SwapCached	
  
§  U64	
  2987544	
  	
  	
  	
  	
  	
  	
  Ac8ve	
  

shu$le-­‐cray.ran.sandia.gov_1/procstatu;l	
  
§  U64	
  1826564	
  	
  	
  	
  	
  	
  	
  cpu0_user_raw	
  
§  U64	
  699631	
  	
  	
  	
  	
  	
  	
  	
  	
  cpu0_sys_raw	
  
§  U64	
  663843760	
  	
  cpu0_idle_raw	
  
§  U64	
  201018	
  	
  	
  	
  	
  	
  	
  	
  	
  cpu0_iowait_raw	
  
	
  
shu$le-­‐cray.ran.sandia.gov_1/vmstat	
  
§  U64	
  40008	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_free_pages	
  
§  U64	
  122286	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_interac8ve_anon	
  
§  U64	
  321902	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_ac8ve_anon	
  
§  U64	
  465532	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_inac8ve_file	
  
§  U64	
  424986	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_ac8ve_file	
  

	
  

Metric sets: 
•  (datatype, value, metricname) 

tuples  
•  optional per metric user 

metadata e.g., component id 
API: 

•  ldms_get_set 
•  ldms_get_metric 
•  ldms_get_u64 

•  Same API for on-node and off-
node (aggregator) transport 

 



Metric	
  Set	
  Format	
  

§  Meta	
  data	
  genera8on	
  number	
  
bumped	
  whenever	
  metrics	
  
are	
  added	
  or	
  removed	
  

§  Data	
  genera8on	
  number	
  
changes	
  whenever	
  a	
  value	
  
changes	
  

§  Meta	
  data	
  genera8on	
  number	
  
is	
  included	
  with	
  metric	
  data	
  to	
  
detect	
  when	
  cached	
  local	
  
meta-­‐data	
  is	
  stale	
  

Metric Set Memory 

Metric Meta Data 
•  Meta Generation Number 

Metric Descriptor 
•  Name 
•  Type 
•  Offset 

Metric Descriptor 
•  Name 
•  Type 
•  Offset 

Metric Descriptor 
•  Name 
•  Type 
•  Offset 

Metric Data 
•  Meta Generation Number 
•  Data Generation Number 

Value Value Value 

Value Value 



Current	
  Data	
  Collector/Storage	
  Plugins	
  

§  /proc 
§  meminfo, vmstat, stat, interrupts, pid/(stat, statm) 
§  kgnilnd	
  (Cray	
  specific)	
  

§  Gem_link_perf	
  (Cray	
  specifc)	
  
§  Gemini	
  Tile	
  and	
  NIC	
  counters	
  w/	
  link	
  aggrega8on	
  

§  perf_event	
  
§  Generic	
  interface	
  for	
  acquisi8on	
  of	
  hardware	
  counters	
  e.g.,	
  data	
  cache	
  

misses,	
  instruc8on	
  cache	
  misses,	
  hyper-­‐transport	
  bandwidth	
  (AMD)	
  
§  rsyslog	
  (Cray	
  specific)	
  

§  SEDC	
  (RAS)	
  and	
  ALPSdata	
  	
  
§  lmsensors	
  (/sys)	
  

§  Temperatures,	
  fan	
  speeds,	
  voltages	
  
§  Storage:	
  Flakile,	
  CSV,	
  SQL,	
  NoSQL,	
  Custom	
  

	
  

	
  



Overhead 
Collection Interval of 1 second on Cray XE6 

•  CPU overhead increases 
with number of metrics in a 
metric set for a particular 
gathering mechanism 
(e.g., /proc, /sys readers, 
ioctl calls) 

•  gemctrs – ioctl as opposed 
to reading  from /proc. 
gemctrs with ~300 metrics 
has < 1/3rd the overhead of 
procstatutil but has 
~twice the number of 
metrics 



Overhead Summary 
CPU Overhead 
•  Mostly due to data collection 

vs. transport 
•  RDMA (UGNI) has none past 

startup 
•  SOCK significant if collection 

overhead is small (e.g., small 
dataset) 

 

Memory Footprint 
•  RDMA has a larger memory 

footprint than SOCK 
•  Except for gemctrs, sampler 

overhead, over ldmsd alone is 
about the same 



USAGE	
  



Data	
  Collec8on	
  and	
  Analysis	
  Tools	
  as	
  a	
  
System	
  Service	
  
§  LDMS	
  data	
  collec8on	
  runs	
  as	
  a	
  system	
  service	
  

§  Run-­‐8me	
  adjustment	
  of	
  data	
  collected,	
  frequency	
  
§  Requires	
  NO	
  changes	
  or	
  relinking	
  to	
  the	
  applica8on	
  
§  Per-­‐user	
  LDMS	
  instances*	
  

§  Run-­‐8me	
  feed	
  of	
  resource	
  u8liza8on	
  informa8on	
  
§  Early	
  warning	
  of	
  problems	
  

§  Provide	
  job	
  profile	
  data	
  dumps	
  on	
  a	
  per-­‐user	
  per-­‐job	
  basis	
  
§  Analysis	
  and	
  plomng	
  tools	
  
§  Users	
  can	
  examine	
  performance	
  across	
  runs	
  
§  Post-­‐mortem	
  diagnosis	
  

§  On-­‐node	
  API	
  for	
  data	
  access	
  
§  Can	
  be	
  used	
  for	
  computa8onal	
  steering,	
  dynamic	
  alloca8on	
  



Temporal	
  Job	
  Profile	
  
(Per-­‐job	
  per-­‐component	
  graphical	
  tools	
  extract	
  data	
  from	
  the	
  database	
  dump)	
  

Scheduler reports NODE_FAIL end state 



Sta8s8cal	
  Profiling	
  Tools	
  
(Ac8ve	
  Memory)	
  

•  Descriptive statistics, high/low water mark, per node and per job basis 
•  One node averages %50 more active memory over job lifetime than other 

nodes 
•  High maximum active memory near job end in all nodes compared to job 

average, available memory 
 



Mul8-­‐node:	
  General	
  Behavior	
  

•  All nodes similarly 
behaved but with offset 

•  Problem is initial node 
condition 



Data Storage Options Enable User’s 
Choice of Analysis Tools 

Example: JavaScript Web Visualizations of MySQL data 





Resource-­‐Aware	
  Applica8ons	
  
§  �Performance	
  of	
  an	
  applica8on	
  depends	
  on	
  capabili8es	
  of	
  the	
  hardware	
  

and	
  system	
  sopware	
  and	
  on	
  how	
  the	
  applica8on	
  u8lizes	
  resources.	
  	
  
§  U8lize	
  node	
  level	
  monitoring	
  informa8on	
  to	
  make	
  run-­‐8me	
  load	
  balancing	
  

decisions.	
  

•  SIERRA 
Applications  
repartition using 
Zoltan 

•  Augmented Zoltan 
to call LDMS for 
resource utilization 
data via on-node 
interface and use 
that information in 
repartitioning 
calculation 

High Fidelity Data Collection and Transport Service Applied to the Cray XE6/XK6 (CUG 2013) 



ADVANCED	
  DEPLOYMENT	
  
FEATURES	
  



Cielo:	
  Data	
  streaming	
  across	
  DISCOM	
  

FY11 ASC L2 Milestone: 
Develop Feedback System for Intelligent Dynamic Resource Allocation to Improve Application Performance  



Suppor8ng	
  Security	
  Postures:	
  
Asymmetric	
  Network	
  Set-­‐up	
  



Concurrent	
  Administrator	
  and	
  User	
  
LDMS	
  Instances	
  	
  

§  Admin:	
  Con8nuous	
  system-­‐wide	
  LDMS	
  deployment	
  
suppor8ng	
  administrator	
  data	
  of	
  interest	
  and	
  data	
  rates	
  

§  Users:	
  transient	
  job-­‐wide	
  LDMS’s	
  launched	
  by	
  the	
  Resource	
  
Manager	
  

§  User	
  determines	
  metrics	
  and	
  frequency	
  based	
  on	
  interest	
  and	
  acceptable	
  
performance	
  impact	
  

§  User	
  can	
  adjust	
  metrics	
  and	
  rate	
  collected	
  during	
  run	
  8me	
  (e.g.,	
  change	
  
rates,	
  metrics	
  based	
  on	
  what	
  is	
  happening	
  in	
  the	
  computa8on).	
  

	
  

Collaboration with LANL:  
Dave Montoya, Mike Mason, Tim Randles, Cory Leuninghoener, Craig Idler 



Security	
  	
  
§  Reliably	
  restrict	
  access	
  to	
  data	
  

§  Where	
  are	
  processes	
  running	
  and	
  who	
  is	
  running?	
  
§  Compute	
  nodes	
  –	
  root/privileged	
  user,	
  user	
  running	
  on	
  node	
  	
  
§  Storage	
  servers	
  –	
  root/privileged	
  user	
  
§  Service	
  nodes	
  –	
  root/privileged	
  user	
  

§  What	
  ports	
  would	
  be	
  open	
  and	
  on	
  what	
  servers	
  
§  Compute	
  nodes	
  –	
  privileged	
  port,	
  unprivileged	
  port	
  for	
  user	
  
§  Storage	
  servers	
  –	
  privileged	
  port	
  
§  Service	
  nodes	
  –	
  privileged	
  port	
  

§  Privilege	
  
§  Authen8ca8on	
  –	
  Unix	
  AUTH	
  
§  Daemons	
  run	
  as	
  root	
  or	
  user/group	
  ldms:ldms	
  

§  Communica8on	
  
§  Trusted	
  Networks	
  (e.g.	
  uGNI)	
  

§  Privileged	
  port	
  or	
  other	
  access	
  mechanism	
  (e.g.	
  PTags	
  in	
  uGNI)	
  	
  
§  Un-­‐trusted	
  Networks	
  

§  Accessible	
  through	
  LDMS	
  secure	
  socket	
  (SSL)	
  transport	
  
§  Authen8ca8on	
  through	
  private/public	
  key	
  +	
  Unix	
  AUTH	
  
§  Data	
  are	
  encrypted	
  via	
  SSL	
  

	
  



Summary	
  
§  Lightweight	
  Distributed	
  Metric	
  Service	
  (LDMS):	
  

§  System	
  service	
  that	
  provides	
  low-­‐overhead	
  collec8on	
  and	
  storage	
  of	
  
high-­‐fidelity	
  system	
  related	
  data	
  	
  

§  Con8nuous	
  job	
  and	
  system	
  resource	
  u8liza8on	
  profiling	
  
§  Supply	
  to	
  the	
  user	
  full	
  data	
  dumps,	
  graphs,	
  sta8s8cs	
  etc	
  

§  Resource	
  u8liza8on	
  informa8on	
  in	
  actual	
  run	
  condi8ons	
  
§  On-­‐node	
  interface	
  for	
  run-­‐8me	
  applica8on	
  interac8on	
  

§  Developing	
  produc8on	
  architecture	
  to	
  launch	
  per-­‐job	
  LDMS	
  
instances	
  
§  User	
  dynamically	
  selects	
  metric	
  sets	
  of	
  interest	
  and	
  frequency	
  based	
  

on	
  interest	
  and	
  acceptable	
  performance	
  impact	
  
§  Open	
  Source	
  

§  hIp://ovis.ca.sandia.gov	
  
§  ovis@sandia.gov	
  



EXTRA	
  SLIDES	
  



Scalable	
  HPC	
  Informa8on	
  Processing	
  

Data	
  
Collec8on	
  

Distributed	
  
Transport	
  

Parallel	
  
Run-­‐8me	
  
Analysis	
  

Environmental	
  
sensors	
  

Hardware	
  
counters	
  

Proc	
  FS	
  

Power	
  

Applica8on	
  

Parallel	
  
Post	
  

Processing	
  

Distributed	
  
Storage	
  Distributed	
  
Storage	
  Distributed	
  
Storage	
  

Distributed	
  
Transport	
  Distributed	
  
Transport	
  

Data	
  
Collec8on	
  Data	
  
Collec8on	
  

Admin	
  
Interface	
  
CLI/GUI	
  

Data	
  
Browser	
  
for	
  Admin	
  

&	
  
Applica8on	
  

User	
  

System	
  
Logs	
   Resource	
  

Manager	
  
Logs	
  



System CPU Utilization 

•  8310 Cores during idle on Cray XE6 



Non-­‐Voluntary	
  Context	
  Switches	
  

§ 	
  From	
  8310	
  processor	
  applica8on	
  run	
  on	
  Cray	
  XE6	
  





LDMS	
  MetricSets	
  Example	
  

ldms_ls	
  -­‐h	
  localhost	
  -­‐x	
  sock	
  -­‐p	
  60000:	
  (Lists	
  the	
  metric	
  sets)	
  
	
  

§  shuIle-­‐cray.ran.sandia.gov_1/meminfo	
  
§  shuIle-­‐cray.ran.sandia.gov_1/procstatu8l	
  
§  shuIle-­‐cray.ran.sandia.gov_1/vmstat	
  



LDMS	
  MetricSets	
  Example	
  
ldms_ls	
  -­‐h	
  localhost	
  -­‐x	
  sock	
  -­‐p	
  60000	
  –v	
  
	
  
§  shuIle-­‐cray.ran.sandia.gov_1/vmstat	
  
§  	
  METADATA	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Size	
  :	
  6954	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Inuse	
  :	
  3792	
  
§  	
  	
  	
  	
  Metric	
  Count	
  :	
  97	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GN	
  :	
  98	
  
§  	
  DATA	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Size	
  :	
  808	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Inuse	
  :	
  808	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GN	
  :	
  105410	
  
§  	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
§  shuIle-­‐cray.ran.sandia.gov_1/procstatu8l	
  
§  	
  METADATA	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Size	
  :	
  7805	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Inuse	
  :	
  4192	
  
§  	
  	
  	
  	
  Metric	
  Count	
  :	
  118	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GN	
  :	
  119	
  
§  	
  DATA	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Size	
  :	
  976	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Inuse	
  :	
  976	
  
§  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  GN	
  :	
  128468	
  
§  	
  -­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐-­‐	
  



LDMS	
  MetricSets	
  Example	
  
ldms_ls	
  -­‐h	
  localhost	
  -­‐x	
  sock	
  -­‐p	
  60000	
  –l:	
  
	
  
§  shu$le-­‐cray.ran.sandia.gov_1/meminfo	
  
§  U64	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  component_id	
  
§  U64	
  160032	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  MemFree	
  
§  U64	
  181728	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Buffers	
  
§  U64	
  3443332	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Cached	
  
§  U64	
  33076	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SwapCached	
  
§  U64	
  2987544	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Ac8ve	
  
§  shu$le-­‐cray.ran.sandia.gov_1/procstatu;l	
  
§  U64	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  component_id	
  
§  U64	
  1826564	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cpu0_user_raw	
  
§  U64	
  699631	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cpu0_sys_raw	
  
§  U64	
  663843760	
  	
  	
  	
  	
  	
  	
  	
  cpu0_idle_raw	
  
§  U64	
  201018	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  cpu0_iowait_raw	
  
§  shu$le-­‐cray.ran.sandia.gov_1/vmstat	
  
§  U64	
  1	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  component_id	
  
§  U64	
  40008	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_free_pages	
  
§  U64	
  122286	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_inac8ve_anon	
  
§  U64	
  321902	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_ac8ve_anon	
  
§  U64	
  465532	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_inac8ve_file	
  
§  U64	
  424986	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  nr_ac8ve_file	
  



RDMA	
  Transport	
  Overview	
  

§  Metric	
  Sets	
  reside	
  in	
  pinned,	
  registered	
  memory.	
  
§  Metric	
  Sets	
  may	
  reside	
  in	
  either	
  kernel	
  or	
  user	
  memory	
  

§  Metric	
  Set	
  Remote	
  Key/Virtual	
  Address	
  is	
  shared	
  with	
  remote	
  
peer	
  and	
  returned	
  with	
  metric	
  set	
  directory	
  informa8on	
  

§  Metric	
  Set	
  contents	
  are	
  ‘mirrored’	
  on	
  consumer	
  
§  Metric	
  Set	
  contents	
  are	
  made	
  consistent	
  with	
  an	
  RDMA	
  READ	
  

that	
  is	
  issued	
  through	
  ldms_update	
  	
  



Security	
  
Provide	
  Compa8bility	
  with	
  security	
  postures	
  of	
  plakorms	
  
	
   	
  

§  Reliably	
  restrict	
  access	
  to	
  data	
  
§  Where	
  are	
  processes	
  running	
  and	
  who	
  is	
  running?	
  

§  Compute	
  nodes	
  –	
  root/privileged	
  user,	
  user	
  running	
  on	
  node	
  	
  
§  Storage	
  servers	
  –	
  root/privileged	
  user	
  
§  Service	
  nodes	
  –	
  root/privileged	
  user	
  

§  What	
  ports	
  would	
  be	
  open	
  and	
  on	
  what	
  servers	
  
§  Compute	
  nodes	
  –	
  privileged	
  port,	
  unprivileged	
  port	
  for	
  user	
  
§  Storage	
  servers	
  –	
  privileged	
  port	
  
§  Service	
  nodes	
  –	
  privileged	
  port	
  

§  Prefer	
  not	
  to	
  run	
  as	
  root	
  –	
  have	
  a	
  trust	
  rela8onship	
  between	
  source	
  
and	
  consumer	
  –	
  currently	
  inves8ga8ng	
  op8ons	
  

	
  



Security	
  
§  Privilege	
  

§  Authen8ca8on	
  –	
  Unix	
  AUTH	
  
§  Daemons	
  run	
  as	
  root	
  or	
  user/group	
  ovis:ovis	
  

§  Communica8on	
  
§  Trusted	
  Networks	
  (e.g.	
  uGNI)	
  

§  These	
  networks	
  must	
  be	
  physically	
  secured	
  from	
  un-­‐trusted	
  clients.	
  
§  Privileged	
  port	
  or	
  other	
  access	
  mechanism	
  (e.g.	
  PTags	
  in	
  uGNI)	
  	
  

§  Un-­‐trusted	
  Networks	
  
§  Accessible	
  through	
  LDMS	
  secure	
  socket	
  (SSL)	
  transport	
  
§  Authen8ca8on	
  through	
  private/public	
  key	
  +	
  Unix	
  AUTH	
  
§  Data	
  are	
  encrypted	
  via	
  SSL	
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