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Introduction Model Problem Discontinuous LSFEM Numerical Tests Least-Squares Finite Element Methods Advantages and Disadvantages

Least-squares finite element methods

I Cast any PDE into an unconstrained minimization problem

I Let X,Y be Hilbert spaces, and let L : X → Y be a differential
operator, consider

Lu = f

I Least-squares finite element solution given by minimizing
least-squares functional

J (u; f) = ‖Lu− f‖2Y

i.e.,
min
X
J (u; f)
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Norm equivalence

Least-squares functional norm equivalent on X if

c1‖u‖X ≤ J (u; 0) ≤ c2‖u‖X ∀u ∈ X

Norm equivalence ⇒ strongly coercive ⇒ well-posed
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Advantages of LSFEM

I General approach to solving PDEs

I Discrete system always symmetric positive definite

I Norm equivalence ⇒ automatic stability and well-posednes of
LSFEM

I Compatibility conditions between the FE spaces are not required
I Variables can be approximated independently from each other by any

conforming space
I Stabilization and/or regularization of weak problems not required

I Automatic error-estimates: functional serves as error estimator

Pavel Bochev ICIAM 2011 Discontinuous LSFEM for Stokes 4 / 27



Introduction Model Problem Discontinuous LSFEM Numerical Tests Least-Squares Finite Element Methods Advantages and Disadvantages

Disadvantages

Disadvantages

I Minimum of least-squares functional nonzero for discrete problem

I Some equations may not be exactly satisfied

I Standard methods not conservative

I Mass loss - solutions are not accurate
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Mass loss - remedies

Strategies to improve mass conservation:

I Refine mesh

I Increase weight of conservation equation

I Restricted least-squares

I Mimetic discretizations

I Discontinuous elements
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Model problem - Stokes equations

Primitive variable formulation{
−4u +∇p = f in Ω

∇ · u = 0 in Ω

Velocity boundary condition

u = 0 on ∂Ω

Zero mean pressure ∫
Ω

p dΩ = 0 .

I u : velocity

I p : pressure
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Backward facing step: geometry and reference solution
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Figure 1: My figure
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Flow past cylinder: geometry
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Figure 1: My figure
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Flow past cylinder: reference solutions

Figure: Velocity field, r = 0.6 (top) and r = 0.9 (bottom).

Pavel Bochev ICIAM 2011 Discontinuous LSFEM for Stokes 11 / 27



Introduction Model Problem Discontinuous LSFEM Numerical Tests Stokes Equations Standard LSFEM

First order formulation

Define vorticity

ω = ∇× u

Use identity

∇×∇× u = −4u +∇(∇ · u)

Velocity-vorticity-pressure formulation


∇× ω +∇p = f on Ω

ω −∇× u = 0 on Ω

∇ · u = 0 on Ω
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A well-posed least-squares principle for Stokes

1. A priori bound:

‖u‖1+‖ω‖0+‖p‖0≤C(‖∇ × ω+∇p‖−1+‖ω −∇× u‖0+‖∇ · u‖0)

for any u ∈ H1
0(Ω) = [H1

0 (Ω)]2, ω ∈ L2(Ω), and p ∈ L2
0(Ω)

2. Norm-equivalent functional:

J−1(u, ω, p; f) = ‖∇×ω+∇p−f‖2−1 +‖∇×u−ω‖20 +‖∇·u‖20 (1)

norm equivalent on X = H1
0(Ω)× L2(Ω)× L2

0(Ω)

3. Least-squares principle: find (u, ω, p) ∈ X such that

J−1(u, ω, p; f) ≤ J−1(v, ξ, q; f) ∀(v, ξ, q) ∈ X

Pavel Bochev ICIAM 2011 Discontinuous LSFEM for Stokes 13 / 27



Introduction Model Problem Discontinuous LSFEM Numerical Tests Stokes Equations Standard LSFEM

Finite element spaces

Approximate
X = H1

0(Ω)× L2(Ω)× L2
0(Ω)

with the equal order space

Xh
r = P̊r(Ω)× Pr(Ω)× P̆r(Ω), r = 2

I P̊r - vector finite element space, each component piecewise
polynomial of degree r, boundary nodes fixed

I Pr - scalar finite element space, piecewise polynomial of degree r

I P̆r - Pr with single node constrained on boundary

Velocity must be quadratic or higher

I All methods are implemented using the Intrepid package:
http://trilinos.sandia.gov/packages/intrepid/
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Mass loss

We examine mass loss in the C0 weighted LSFEM

J hµ (uh, ωh, ph; fh) =

h2‖∇ × ωh +∇ph − fh‖20 + ‖∇ × uh − ωh‖20 + µ‖∇ · uh‖20
(2)

implemented with equal order space

Xh
r = P̊r(Ω)× Pr(Ω)× P̆r(Ω) r = 2 (3)

I Expect better mass conservation with large µ

Mass loss is estimated by computing mass flow along vertical lines placed
at every 0.1 units along the x-axis. A total of 100 lines are used for the
backward-facing step and 40 lines are used for the flow past a cylinder.
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Mass loss - backward facing step
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Figure: Percent mass loss of standard LSFEM for backward facing step with
different weights on continuity equation.
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Mass loss - cylinder
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Figure: Percent mass loss of standard LSFEM for flow past a cylinder with
r = 0.6 (left) and r = 0.9 (right)
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LSFEM with improved mass conservation:
Take 1 - discontinuous velocity

Let velocity be discontinuous across element boundaries

X̃h
r = [P̊r]× Pr × P̆r

Discontinuous velocity LSFEM:

J̃h−1(uh, ωh, ph; fh) =

h2‖∇ × ωh +∇ph − fh‖20

+
∑
K∈K

(
‖∇ × uh − ωh‖20,K + ‖∇ · uh‖20,K

)
+
∑

ei∈E(Ω)

h−1
(
α1‖[uh · ni]‖20,ei + α2‖[uh × ni]‖20,ei

)
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Mass loss - backward step
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Figure: Percent mass loss of discontinuous velocity formulation for the
backward-facing step. Legend values are α1, α2.

Problem solved :)
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Mass loss - cylinder
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Figure: Percent mass loss of discontinuous velocity formulation for cylinder
flow with r = 0.6 (left) and r = 0.9 (right). Legend values are α1, α2.

Not really :(
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LSFEM with improved mass conservation:
Take 2 - Stream function

Force uh to be pointwise divergence-free on each element by setting

uh|K = ∇× ψh|K ∀K ∈ K ,

where ψh ∈ [Pr+1] is discontinuous stream function

I Need ψh ∈ [Pr+1] so uh = ∇× ψh ∈ [Pr], where r ≥ 2

Since ∇ · (∇× φ) = 0 for any φ, ∇ · uh = 0 automatically satisfied on
each element
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Discontinuous SVP formulation

Since ∇ · uh = 0 on each element, terms can be dropped

J̃h−1(ψh, ωh, ph; fh) =

h2‖∇ × ωh +∇ph − fh‖20 +
∑
K∈K
‖∇ ×∇× ψh − ωh‖20,K

+
∑

ei∈E(Ω)

h−1
(
‖[(∇× ψh) · ni]‖20,ei + ‖[(∇× ψh)× ni]‖20,ei

)
+

∑
ei∈E(Γ)

h−1‖(∇× ψh)× ni‖20,ei+
∑

ei∈E(Ω)

h−3‖[ψh]‖20,ei
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Mass loss - backward step
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Figure: Comparison of mass loss in C0 and SVP formulations for the
backward-facing step.
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Mass loss - cylinder
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Figure: Comparison of mass loss in C0 and SVP formulations for cylinder with
r = 0.6 (left) and r = 0.9 (right).
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Pressure - backward step
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Figure: Pressure for C0 formulation (top) and SVP formulation (bottom)
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Vorticity - backward step

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

 

 

−4
−2
0
2
4

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

 

 

−4
−2
0
2
4

Figure: Vorticity for C0 formulation (top) and SVP formulation (bottom)
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Pressure - cylinder
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Figure: Pressure for C0 formulation (top) and SVP formulation (bottom)
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Vorticity - cylinder
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Figure: Vorticity for C0 formulation (top) and SVP formulation (bottom)
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Summary

Summary

I Standard LSFEM for Stokes can experience significant mass loss

I Surprisingly, making velocity discontinuous does not fix the problem

I Using discontinuous stream-function works much better!

Ongoing work

I Divergence-free basis vs. stream-function formulation

I Formal error analysis of the method

I Extension to 3-D and Navier-Stokes

P. Bochev, J. Lai, and L. Olson. Int. J. Numer. Meth. Fluids, 2011.
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