

A Locally Conservative, **Discontinuous** SAND2011-4841C Least-Squares Finite Element Method for the Stokes Equations

Pavel Bochev¹
with
James Lai² and Luke Olson²

¹Numerical Analysis and Applications
Sandia National Laboratories

²University of Illinois at Urbana-Champaign

ICIAM 2011
July 19, 2011

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Least-squares finite element methods

- ▶ Cast any PDE into an unconstrained minimization problem
- ▶ Let X, Y be Hilbert spaces, and let $\mathcal{L} : X \rightarrow Y$ be a differential operator, consider

$$\mathcal{L}u = f$$

- ▶ Least-squares finite element solution given by minimizing *least-squares* functional

$$\mathcal{J}(u; f) = \|\mathcal{L}u - f\|_Y^2$$

i.e.,

$$\min_X \mathcal{J}(u; f)$$

Norm equivalence

Least-squares functional norm equivalent on X if

$$c_1 \|u\|_X \leq \mathcal{J}(u; 0) \leq c_2 \|u\|_X \quad \forall u \in X$$

Norm equivalence \Rightarrow strongly coercive \Rightarrow well-posed

Advantages of LSFEM

- ▶ General approach to solving PDEs
- ▶ Discrete system always **symmetric positive definite**
- ▶ Norm equivalence \Rightarrow **automatic stability** and **well-posedness** of LSFEM
 - ▶ Compatibility conditions between the FE spaces are not required
 - ▶ Variables can be approximated independently from each other by any conforming space
 - ▶ Stabilization and/or regularization of weak problems not required
- ▶ Automatic error-estimates: functional serves as error estimator

Disadvantages

Disadvantages

- ▶ Minimum of least-squares functional nonzero for discrete problem
- ▶ Some equations may not be exactly satisfied
- ▶ Standard methods not conservative
- ▶ **Mass loss** - solutions are not accurate

Mass loss - remedies

Strategies to improve mass conservation:

- ▶ Refine mesh
- ▶ Increase weight of conservation equation
- ▶ Restricted least-squares
- ▶ Mimetic discretizations
- ▶ Discontinuous elements

Mass loss - remedies

Strategies to improve mass conservation:

- ▶ Refine mesh
- ▶ Increase weight of conservation equation
- ▶ Restricted least-squares
- ▶ Mimetic discretizations
- ▶ Discontinuous elements

Model problem - Stokes equations

Primitive variable formulation

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f} & \text{in } \Omega \\ \nabla \cdot \mathbf{u} = 0 & \text{in } \Omega \end{cases}$$

Velocity boundary condition

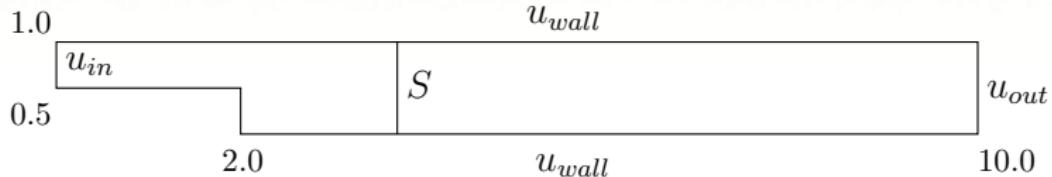
$$\mathbf{u} = 0 \quad \text{on } \partial\Omega$$

Zero mean pressure

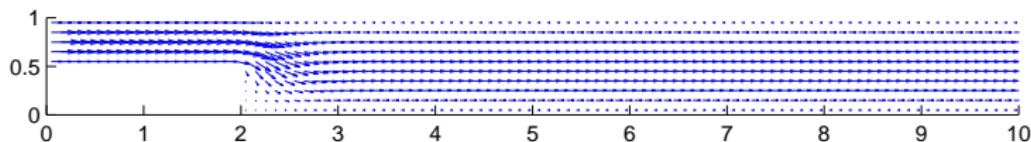
$$\int_{\Omega} p \, d\Omega = 0.$$

- ▶ \mathbf{u} : velocity
- ▶ p : pressure

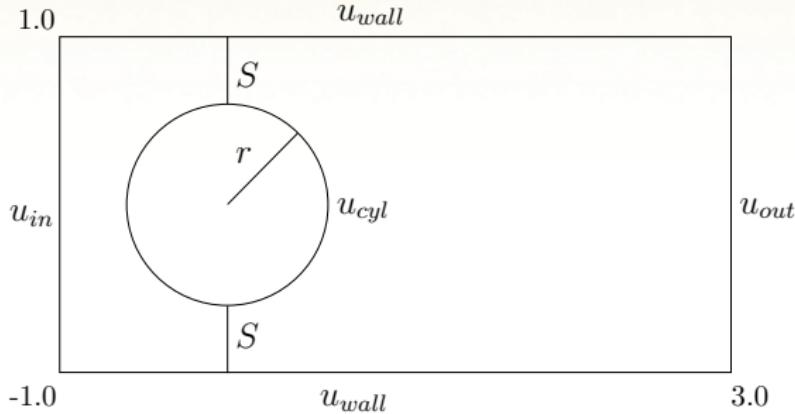
Backward facing step: geometry and reference solution



$$\mathbf{u}_{in} = \begin{bmatrix} 8(y - 0.5)(1 - y) \\ 0 \end{bmatrix} \quad , \quad \mathbf{u}_{out} = \begin{bmatrix} y(1 - y) \\ 0 \end{bmatrix} \quad , \quad \mathbf{u}_{wall} = \mathbf{0}$$



Flow past cylinder: geometry



$$\mathbf{u}_{in} = \mathbf{u}_{out} = \mathbf{u}_{wall} = \begin{bmatrix} (1-y)(1+y) \\ 0 \end{bmatrix},$$

$$\mathbf{u}_{cyl} = \mathbf{0}$$

Flow past cylinder: reference solutions

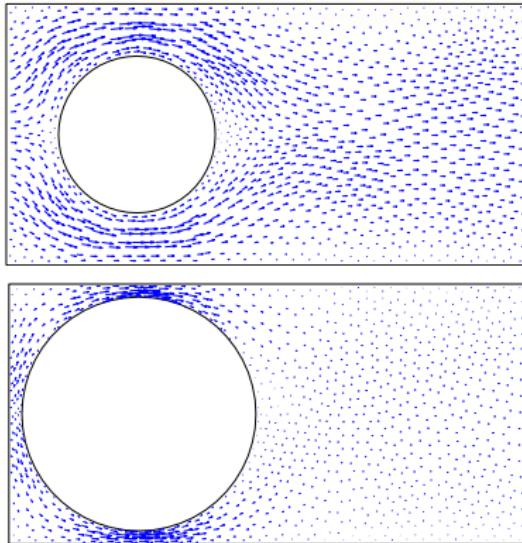


Figure: Velocity field, $r = 0.6$ (top) and $r = 0.9$ (bottom).

First order formulation

Define vorticity

$$\omega = \nabla \times \mathbf{u}$$

Use identity

$$\nabla \times \nabla \times \mathbf{u} = -\Delta \mathbf{u} + \nabla(\nabla \cdot \mathbf{u})$$

Velocity-vorticity-pressure formulation

$$\begin{cases} \nabla \times \omega + \nabla p = \mathbf{f} & \text{on } \Omega \\ \omega - \nabla \times \mathbf{u} = 0 & \text{on } \Omega \\ \nabla \cdot \mathbf{u} = 0 & \text{on } \Omega \end{cases}$$

A well-posed least-squares principle for Stokes

1. A priori bound:

$$\|\mathbf{u}\|_1 + \|\omega\|_0 + \|p\|_0 \leq C(\|\nabla \times \omega + \nabla p\|_{-1} + \|\omega - \nabla \times \mathbf{u}\|_0 + \|\nabla \cdot \mathbf{u}\|_0)$$

for any $\mathbf{u} \in \mathbf{H}_0^1(\Omega) = [H_0^1(\Omega)]^2$, $\omega \in L^2(\Omega)$, and $p \in L_0^2(\Omega)$

2. Norm-equivalent functional:

$$\mathcal{J}_{-1}(\mathbf{u}, \omega, p; \mathbf{f}) = \|\nabla \times \omega + \nabla p - \mathbf{f}\|_{-1}^2 + \|\nabla \times \mathbf{u} - \omega\|_0^2 + \|\nabla \cdot \mathbf{u}\|_0^2 \quad (1)$$

norm equivalent on $X = \mathbf{H}_0^1(\Omega) \times L^2(\Omega) \times L_0^2(\Omega)$

3. Least-squares principle: find $(\mathbf{u}, \omega, p) \in X$ such that

$$\mathcal{J}_{-1}(\mathbf{u}, \omega, p; \mathbf{f}) \leq \mathcal{J}_{-1}(\mathbf{v}, \xi, q; \mathbf{f}) \quad \forall (\mathbf{v}, \xi, q) \in X$$

Finite element spaces

Approximate

$$X = \mathbf{H}_0^1(\Omega) \times L^2(\Omega) \times L_0^2(\Omega)$$

with the equal order space

$$X_r^h = \mathring{\mathbf{P}}_r(\Omega) \times \mathcal{P}_r(\Omega) \times \check{\mathcal{P}}_r(\Omega), \quad r = 2$$

- ▶ $\mathring{\mathbf{P}}_r$ - vector finite element space, each component piecewise polynomial of degree r , boundary nodes fixed
- ▶ \mathcal{P}_r - scalar finite element space, piecewise polynomial of degree r
- ▶ $\check{\mathcal{P}}_r$ - \mathcal{P}_r with single node constrained on boundary

Velocity must be quadratic or higher

- ▶ All methods are implemented using the Intrepid package:
<http://trilinos.sandia.gov/packages/intrepid/>

Mass loss

We examine mass loss in the C^0 weighted LSFEM

$$\begin{aligned} \mathcal{J}_\mu^h(\mathbf{u}^h, \omega^h, p^h; \mathbf{f}^h) = \\ \textcolor{blue}{h^2} \|\nabla \times \omega^h + \nabla p^h - \mathbf{f}^h\|_0^2 + \|\nabla \times \mathbf{u}^h - \omega^h\|_0^2 + \textcolor{red}{\mu} \|\nabla \cdot \mathbf{u}^h\|_0^2 \end{aligned} \quad (2)$$

implemented with equal order space

$$X_r^h = \mathring{\mathbf{P}}_r(\Omega) \times \mathcal{P}_r(\Omega) \times \breve{\mathcal{P}}_r(\Omega) \quad r = 2 \quad (3)$$

- ▶ Expect better mass conservation with large μ

Mass loss is estimated by computing mass flow along vertical lines placed at every 0.1 units along the x -axis. A total of 100 lines are used for the backward-facing step and 40 lines are used for the flow past a cylinder.

Mass loss - backward facing step

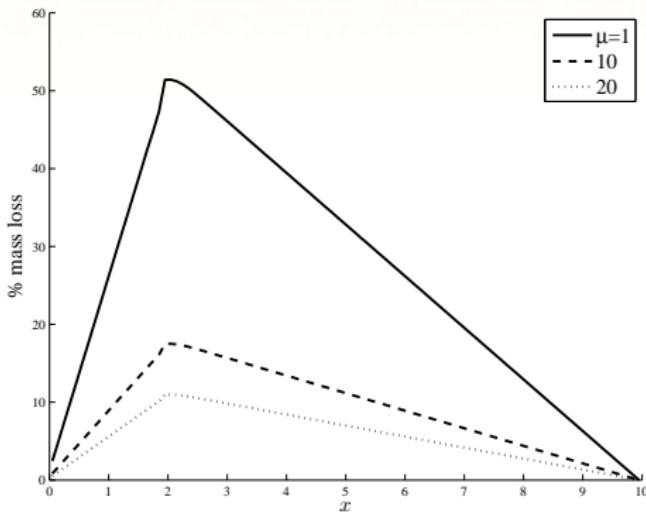


Figure: Percent mass loss of standard LSFEM for backward facing step with different weights on continuity equation.

Mass loss - cylinder

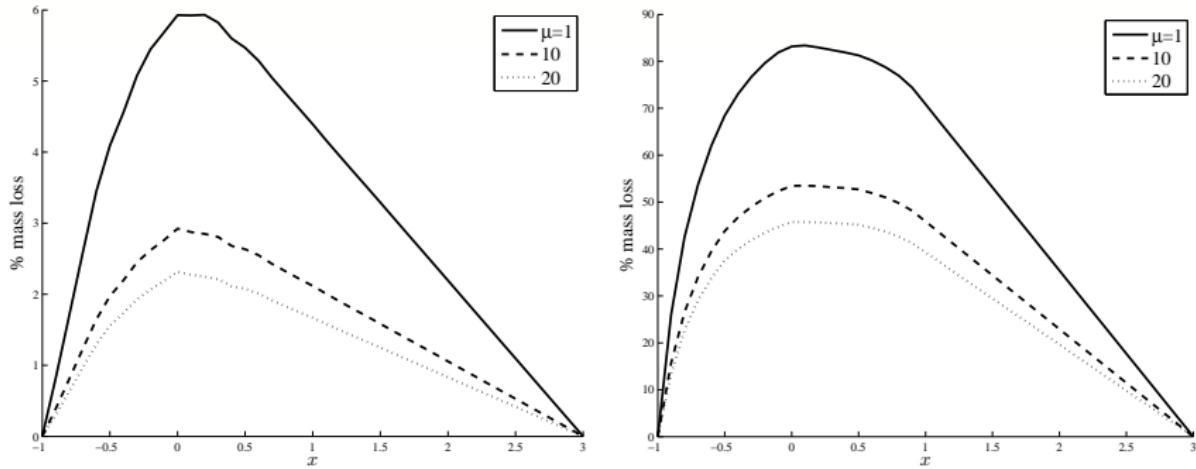


Figure: Percent mass loss of standard LSFEM for flow past a cylinder with $r = 0.6$ (left) and $r = 0.9$ (right)

LSFEM with improved mass conservation:

Take 1 - discontinuous velocity

Let velocity be discontinuous across element boundaries

$$\tilde{X}_r^h = [\mathring{\mathbf{P}}_r] \times \mathcal{P}_r \times \check{\mathcal{P}}_r$$

Discontinuous velocity LSFEM:

$$\begin{aligned} \tilde{J}_{-1}^h(\mathbf{u}^h, \omega^h, p^h; \mathbf{f}^h) = & h^2 \|\nabla \times \omega^h + \nabla p^h - \mathbf{f}^h\|_0^2 \\ & + \sum_{K \in \mathcal{K}} (\|\nabla \times \mathbf{u}^h - \omega^h\|_{0,K}^2 + \|\nabla \cdot \mathbf{u}^h\|_{0,K}^2) \\ & + \sum_{e_i \in \mathcal{E}(\Omega)} h^{-1} (\alpha_1 \|[\mathbf{u}^h \cdot \mathbf{n}_i]\|_{0,e_i}^2 + \alpha_2 \|[\mathbf{u}^h \times \mathbf{n}_i]\|_{0,e_i}^2) \end{aligned}$$

Mass loss - backward step

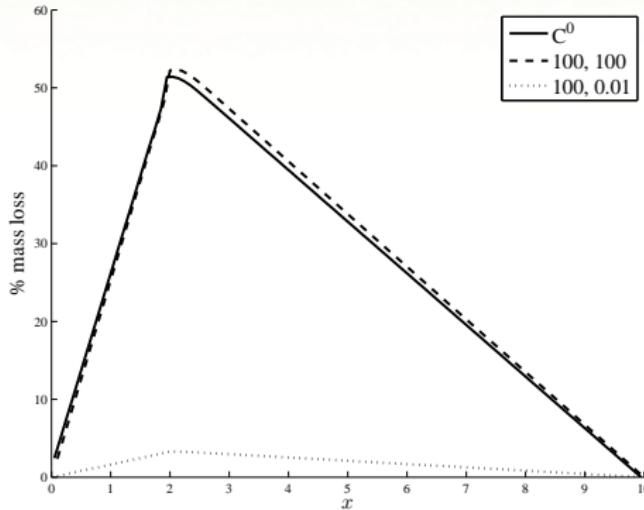


Figure: Percent mass loss of discontinuous velocity formulation for the backward-facing step. Legend values are α_1, α_2 .

Problem solved :)

Mass loss - cylinder

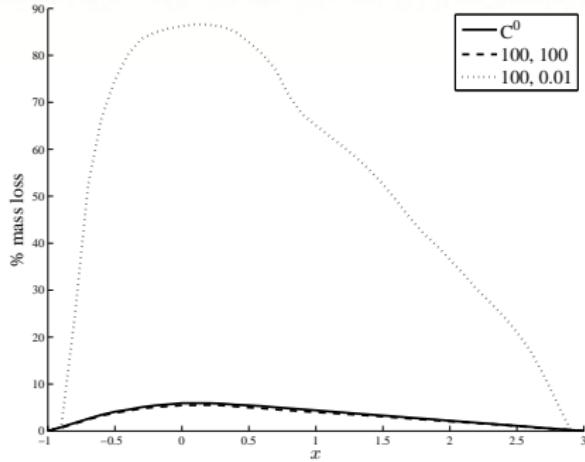
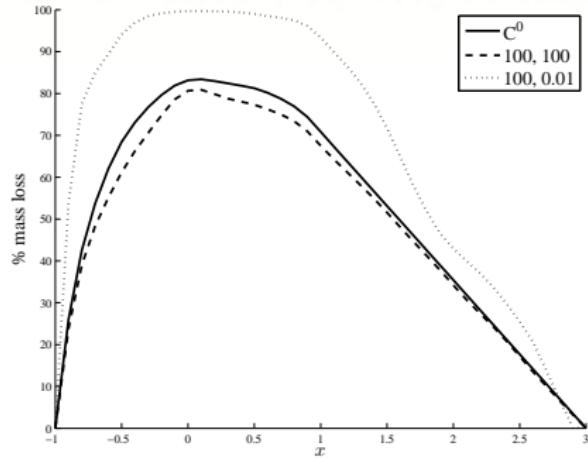


Figure: Percent mass loss of discontinuous velocity formulation for cylinder flow with $r = 0.6$ (left) and $r = 0.9$ (right). Legend values are α_1, α_2 .

Not really :(

LSFEM with improved mass conservation: Take 2 - Stream function

Force \mathbf{u}^h to be *pointwise divergence-free* on each element by setting

$$\mathbf{u}^h|_K = \nabla \times \psi^h|_K \quad \forall K \in \mathcal{K},$$

where $\psi^h \in [\mathcal{P}^{r+1}]$ is discontinuous *stream function*

- ▶ Need $\psi^h \in [\mathcal{P}^{r+1}]$ so $\mathbf{u}^h = \nabla \times \psi^h \in [\mathbf{P}^r]$, where $r \geq 2$

Since $\nabla \cdot (\nabla \times \phi) = 0$ for any ϕ , $\nabla \cdot \mathbf{u}^h = 0$ automatically satisfied on each element

Discontinuous SVP formulation

Since $\nabla \cdot \mathbf{u}^h = 0$ on each element, terms can be dropped

$$\begin{aligned}
 \widetilde{J}_{-1}^h(\psi^h, \omega^h, p^h; \mathbf{f}^h) = & h^2 \|\nabla \times \omega^h + \nabla p^h - \mathbf{f}^h\|_0^2 + \sum_{K \in \mathcal{K}} \|\nabla \times \nabla \times \psi^h - \omega^h\|_{0,K}^2 \\
 & + \sum_{e_i \in \mathcal{E}(\Omega)} h^{-1} \left(\|[(\nabla \times \psi^h) \cdot \mathbf{n}_i]\|_{0,e_i}^2 + \|[(\nabla \times \psi^h) \times \mathbf{n}_i]\|_{0,e_i}^2 \right) \\
 & + \sum_{e_i \in \mathcal{E}(\Gamma)} h^{-1} \|(\nabla \times \psi^h) \times \mathbf{n}_i\|_{0,e_i}^2 + \sum_{e_i \in \mathcal{E}(\Omega)} h^{-3} \|[\psi^h]\|_{0,e_i}^2
 \end{aligned}$$

Mass loss - backward step

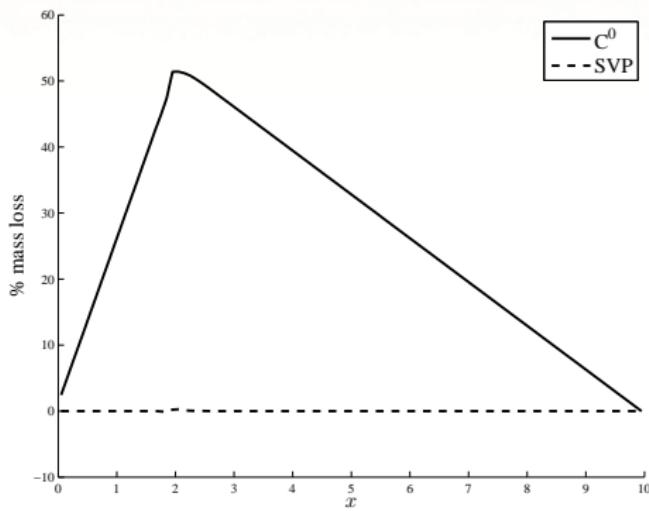


Figure: Comparison of mass loss in C^0 and SVP formulations for the backward-facing step.

Mass loss - cylinder

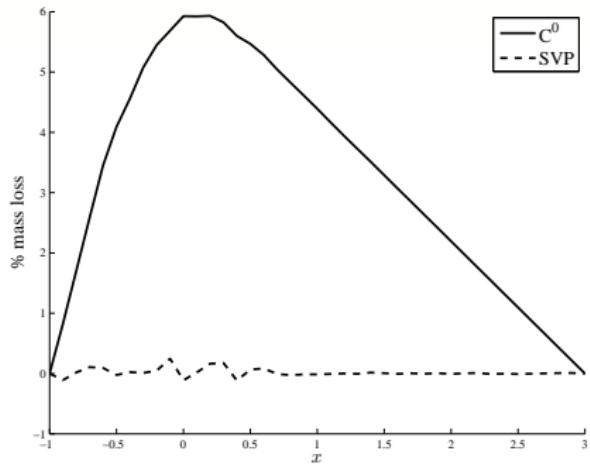
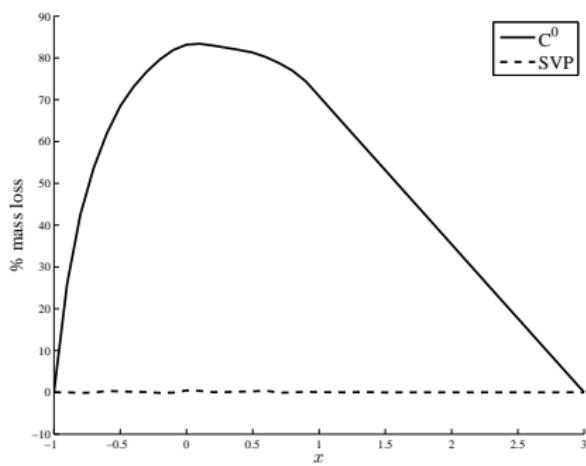


Figure: Comparison of mass loss in C^0 and SVP formulations for cylinder with $r = 0.6$ (left) and $r = 0.9$ (right).

Pressure - backward step

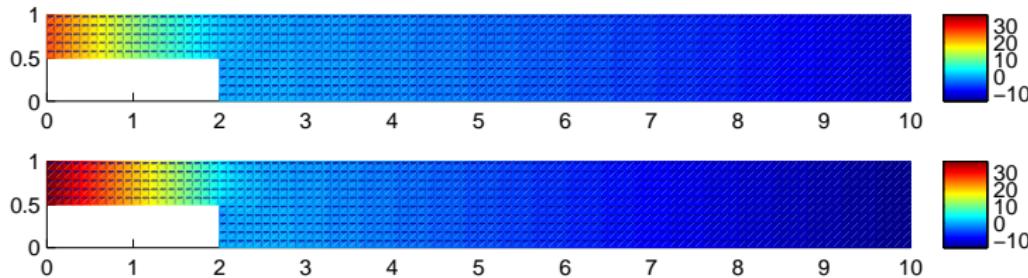


Figure: Pressure for C^0 formulation (top) and SVP formulation (bottom)

Vorticity - backward step

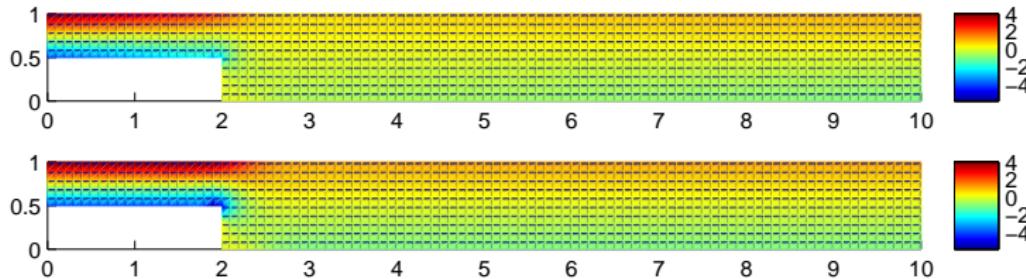


Figure: Vorticity for C^0 formulation (top) and SVP formulation (bottom)

Pressure - cylinder

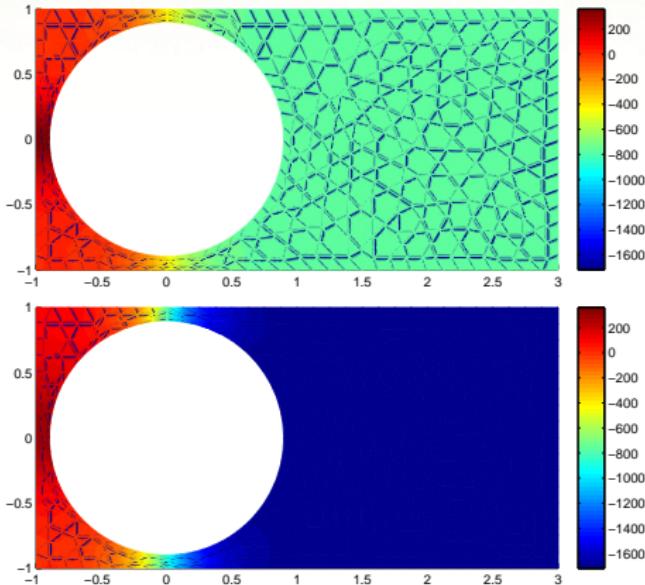


Figure: Pressure for C^0 formulation (top) and SVP formulation (bottom)

Vorticity - cylinder

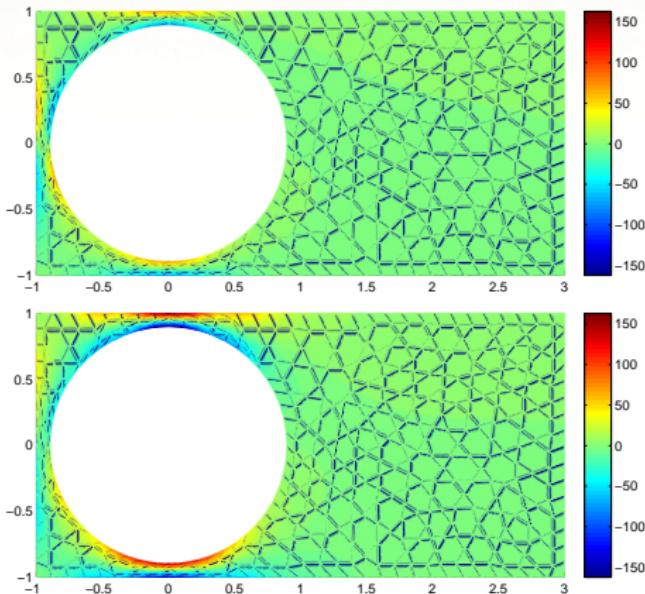


Figure: Vorticity for C^0 formulation (top) and SVP formulation (bottom)

Summary

Summary

- ▶ Standard LSFEM for Stokes can experience significant mass loss
- ▶ Surprisingly, making velocity discontinuous does not fix the problem
- ▶ Using discontinuous stream-function works much better!

Ongoing work

- ▶ Divergence-free basis vs. stream-function formulation
- ▶ Formal error analysis of the method
- ▶ Extension to 3-D and Navier-Stokes

P. Bochev, J. Lai, and L. Olson. *Int. J. Numer. Meth. Fluids*, 2011.