

Office of Defense Programs

Current Work in Support of Section III Division 3 of the ASME Boiler and Pressure Vessel Code

**Doug Ammerman
Sandia National Laboratories***
**Gordon Bjorkman
US Nuclear Regulatory Commission**
Oct. 6, 2011

*Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Section III Division 3

Office of Defense Programs

Containments for Transportation and Storage of Spent Nuclear Fuel and High Level Radioactive Material and Waste

- This is the part of the ASME Code that is most relevant to the design of radioactive material transportation packages

Topics for Discussion

Office of Defense Programs

- NRC review/acceptance of the Code
- Sub-section WD
- Strain-based acceptance criteria
- Special Working Group on Computational Modeling for Explicit Dynamics

NRC Review/Acceptance of the Code

Office of Defense Programs

- The Division of Spent Fuel Storage and Transportation has initiated a formal review of Section III Division 3 of the Code
- A team of senior technical experts is nearly finished with this review
- Comments are expected to be sent to ASME before the February Code Week meeting
- This is the first step toward having the NRC recognize the Code – ASME resolution of comments may be needed for full recognition

Section WD

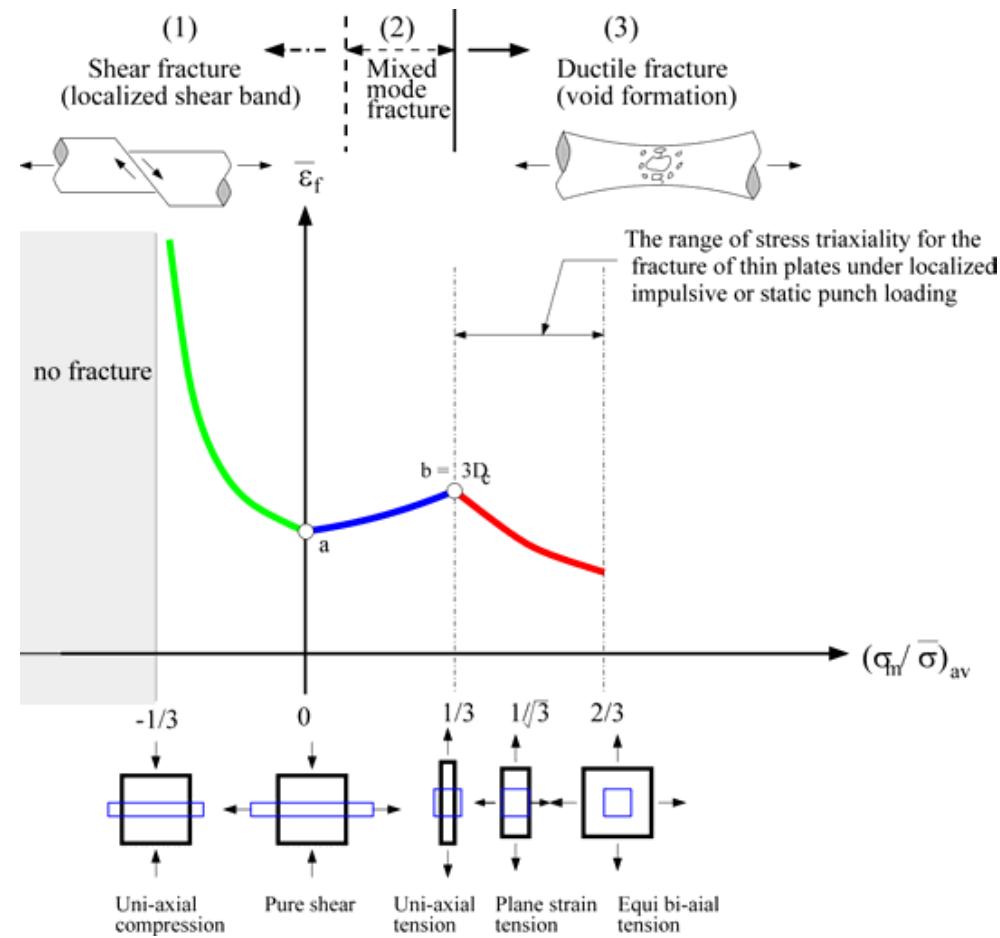
Office of Defense Programs

- The Code already has rules for transportation packages (Section WB) and storage casks (Section WC)
- Section WD is being written for internal support structures (baskets)
- Most sub-parts of this section are finished and are going through the approval process
- When all sub-parts are approved, the entire section will be added to the Code

Strain-Based Acceptance Criteria

Office of Defense Programs

- The ASME Code has traditionally relied upon stress-based acceptance criteria
- For severe energy-limited events a strain-based approach provides a more consistent margin of safety (the current rules were originally requested to provide guidance for airplane impact analyses)
- Rules for inelastic analyses using strain-based acceptance criteria have been developed and are going through the approval process


Office of Defense Programs

- Limited to energy-limited events (such as impact)
- Intended for events that are not moderated by impact limiters, such as puncture or airplane impact
- Currently limited to 304/304L and 316/316L steel
- Requires detailed knowledge of the stress-strain curve
- Requires tracking of individual heats of material
- Recognizes that failure strain is a function of stress state (stress triaxiality)
- Stress triaxiality varies with both time and location
- Use requires “Quality Models”

Triaxiality Factor

Office of Defense Programs

- ASME definition is first stress invariant (sum of the principal stresses) divided by the deviatoric stress (von Mises stress)
 - uniaxial tension is 1
- Many finite element theory manuals define it is the mean stress divided by the deviatoric stress – uniaxial tension is 1/3

Office of Defense Programs

- At regions away from a discontinuity:

- Average through the cross-section:

$$[(TF)(\varepsilon_{eq}^p)]_{avg} \leq (0.67 \varepsilon_{uniform})$$

- Maximum location (may not be on the surface):

$$[(TF)(\varepsilon_{eq}^p)]_{max} \leq [\varepsilon_{uniform} + 0.25 (\varepsilon_{fracture} - \varepsilon_{uniform})]$$

- At the location of a discontinuity:

- Average through the cross-section:

$$[(TF)(\varepsilon_{eq}^p)]_{avg} \leq (0.85 \varepsilon_{uniform})$$

- Maximum location (may not be on the surface):

$$[(TF)(\varepsilon_{eq}^p)]_{max} \leq [\varepsilon_{uniform} + 0.25 (\varepsilon_{fracture} - \varepsilon_{uniform})]$$

- These inequalities must be satisfied at all time increments

Special Working Group on Computational Modeling for Explicit Dynamics

Office of Defense Programs

- This group is tasked with defining “Quality Models”, which the NRC will require for either stress-based analyses or strain-based analyses
- The output of their efforts will be a guidance document which is expected to become an ASME Code Appendix
- Many of the items in this guidance document will be incorporated into NRC guidance, either through an ISG or revision to Reg. Guide 7.6

SWG on Computational Modeling Guidance Document

Office of Defense Programs

- Choosing a suitable finite element code
- Input to the finite element analysis
 - Geometry
 - Mesh/element selection
 - Contact/friction/interfaces
 - Material models/properties
 - Boundary conditions
 - Initial conditions
- Analysis control and formulation
 - Time increment
 - Mass scaling
 - Hourglass control and shear locking
 - Damping

SWG on Computational Modeling Guidance Document (cont.)

Office of Defense Programs

- Other considerations
 - Residual stresses/strains
 - Additive damage from sequential events
 - Thermal stresses due to differential thermal expansion
 - Modeling of welded connections
 - Modeling of components that buckle
 - Modeling of bolted connections
 - Gaps
- Modeling examples including mesh convergence studies
- Analysis checking
- Results/reporting