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X-ray Thomson scattering of
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the Z-accelerator
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Combining x-ray Thomson scattering with Z's unique
warm dense matter samples will provide benchmark
quallty data

Z's warm dense matter samples are large,
uniform, long-lived and precisely characterized

= X-ray Thomson scattering will expand
diagnostic capabilities on Z beyond pressure
and density measurements
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= We have demonstrated XRTS measurements
with spatial resolution on Z
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X-ray Thomson scattering (XRTS) is a powerful
diagnostic to infer n,, T, <Z>, and phase information
= Extract information about sample from scattered x-rays

= Spectrally resolve elastic and inelastic features
= Spatially distinguish scattering origination within sample Rayleigh
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Z is a unique platform for accurate and precise
warm dense matter research

= Z-Dynamic Materials Properties (Z-DMP) experiments

Shock-compressed state experimentally determined from flyer's impact
velocity (~ 40 km/s, 10 Mbar, several eV)

Pressure and density characterized ~ 1-2 %

= No x-ray or hot-electron preheat of sample

= Large samples enable uniform shock state: spatially & temporally
Promotes more accurate and precise measurements

dimension Z laser Z/laser
Initial size TmMmx10mm | 0.25 mm x 1 mm 4 x10
state
WDM thickness 200 — 400 um 50 um 8—-16
state
scattering 8 —15 mm3 0.04 mm3 750 - 1500
volume
duration 10 — 100 ns 0.1-1 ns 10-100

R. W. Lemke, et al., J. Appl. Phys. 98, 073530 (2005).
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3 key components to XRTS on Z-DMP experiments

* Produce quasi-monochromatic x-rays
= ZBL Beamlet (2 kJ, 2 ns) irradiate metal foil
> Mn-He-o. (6.181 keV)

ZBL
Beamlet

incident
X-rays

= Generate WDM state

= Z-DMP load using magnetically launched flyer to 4 )
shock compress sample = coaxial load debris
= Debris mitigation to protect ZBL mitigation
\ J

scattered
X-rays

= Detect scattered x-rays

= X-ray scattering spherical spectrometer (XRS3),
resolve scattered x-rays spectrally and spatially
using spherically bent crystal = Ge 422

= Record x-rays = image plate
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Spatial resolution is essential for benchmark quality
XRTS data

=  ALEGRA calculations with Al flyer (16.7 km/s)

0.4 Mbar, 2.5 eV in CH, foam target
Large spatial extent: 270 um XRTS 2436 p & T vs. X @ ZBL time 3390 ns.
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= Measure XRTS signal from ambient & shocked material, and x-ray source
Verify uniformity of WDM state
Characterize x-ray probe spectrum
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X-ray background and load debris pose challenges
for Z-XRTS experiments

= X-ray background FOA glass shield

= Photons with energies up to 10 MeV are produced
in both power feed section and load region

= Sufficient signal-to-noise

= Debris mitigation
= Protect ZBL final optics assembly (FOA)
= Prevent catastrophic vacuum breach
= Retrieve XRTS data

i XRS3 (x-ray

= Protect spherically bent crystal scattering
spherical c ‘ '
spherical crystal spectrometer) — baffle

plates

aperture
block
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Low x-ray background of Z-DMP experiments make
XRTS viable

= Z-pinch radiation producing experiments
Strong x-ray background > 25 PSL (photostimulated luminesce)

= Ride-along tests on Z-DMP experiments
Lower x-ray background < 1 PSL
External and internal tungsten shielding reduced x-ray background ~ 0.05 PSL
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Debris mitigation strategy has been successful

0.595d1 .05v0.995

= Hypervelocity penetration depth,! Y = 02660, d,>v\"" (cos6)***
= Increase FOA glass shield thickness
= Decrease projectile density, size, and velocity

FOA glass sHieId

= Aperture block and baffle plates limited axial debris

= Mostly liquid, some small solid fragments
= ZBL FOA protected

= XRTS data retrieved from XRS3
= Crystal still damaged

spherical
crystal

Y aperture
e block

'R. R. Burt and E. L. Christiansen, Int. J. Impact Engineering 29, 153 (2003).
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First integrated Z-XRTS experiment measured hlgh-

resolution x-ray spectra

= Current loss near load reduced flyer velocity
to only 9 km/s
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Ambient scattering data useful for validating predictions
of XRTS code

= Gregori’'s XRTS code' was combined with SPECT3D in order to model
scattering from 3D, non-homogenous plasmas.?
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Combining x-ray Thomson scattering with Z's unique
warm dense matter samples will provide benchmark
quality data

J
o
= We have demonstrated XRTS measurements = I
with spatial resolution on Z on ambient sample (S} — @
“HoM—
g ©
SHONN @
O
= Future work W 7~

XRTS of shocked CH, foams, Be and LiD targets
Higher energy x-ray probe (Ni-He-a, 7.804 keV)
Spherical crystal debris mitigation
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