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7 Why Model Networks?

Insight into...
— Generative process

— Graph properties such as
eigenvalue distribution

— Evolution
e Testing graph algorithms
— Various scales
— Various degree distributions

* Enable sharing of realistic but
non-sensitive data

— Computer network traffic
— Social networks
 Anomaly detection

— Unusual edges

* Guide statistical sampling
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Graph Model Desiderata

* Goal: Test graph algorithms /Clustering Coefficient\
e Desiderata
t;

1. Model a variety of “heavy tailed” CC: —
degree distributions (2

d;
o Degree distributions vary heavily between ( ) )
various kinds of graphs
(Sala et al., arXiv1108.0027)

t, = # triangles at vertex ¢
d; = degree of vertex ¢

2. High clustering coefficient K
o ldeally, for both low and high degrees nodes

3. Well-connected  Global Clustering Coeff,
o Large connected component t
o Small diameter Z?,

()
4. Scales to large problems EeT= -

d@)
o 2*2 nodes and 24 edges for Graph 500 \_ 1 ( 2 ')




Inherently Sequential
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Limitations of Current Models

Sala, Cao, Wilson, Zablit, Zheng, Zhao, WWW2010

Feature-driven
* Barabasi-Albert —power law deg. dist.

*  Forest Fire — new node connects to some 0.4 . . . . |
neighbors of its 15t neighbor and then 0 3;5 FHDre?tDFi;e
= - i edl Lala 7
recurses .g 03k Nearest Neighbor ====== |
Intent-driven = ?h,. Random Walk
) : g 021, Hr I KronFit
* Random Walk — new node’s connections S ol ui’*‘Phﬂ1H"||||4J\|||,| | ] clitlf 2t
depend on random walk from random node 2 .|} ' Bﬁra as'f‘ et
in graph 2 \ \ i i N
: g 01 L g,{.ﬂ u-'-;}-..,' TR
* Nearest Neighbor —new node connectsto G 5 | ‘"**‘wwmﬁﬂfﬁ Wi W'\ PN ]
some neighbors of its 1t neighbor ) P———" P RN G I W T Zah iV \\/"/
Structure-driven 50 100 150 200 250
« Stochastic Kronecker Graphs — edges Social Degree
generated via Kronecker product of 2x2
generator matrices Figure from Sala et al. (2010) showing
° dK-graphs - directly includes Subgraph Santa Barbara faCEbOOk SOCia/ netWOI’k.

patterns from original graph

Clearly Best for Scalability,

Does not Scale But Poor Clustering Coefficient
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Stochastic Kronecker Graph (SKG): ).
The Model to Beat

Chakrabarti and Faloutsos, SDM04
Leskovec et al., JMLR, 2010
Seshadri, Pinar, Kolda, arXiv: 1102.5046, 2011

Generator for Graph500 Supercomputing : ' . SKG
Benchmark Noisy SKG (0.05)
s Nosiy SKG (0.10)

PROS

> 2
S 10
— Only 4 parameters >
1]
s
— Very scalable! %
<

CONS 100

— Oscillations in its degree distribution

* Noisy version fixes problem 10" 10" 102 10 10*
— For Graph 500 parameters, 50-74% of its Out Degree
vertices are isolated SKG for Graph 500

— Limited degree distributions

— No community structure
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Underlying Principal

* High clustering coefficients require lots of
triangles

— If (u,v) and (v,w) are edges, probability of (u,w)
should be high

 Doesn’t occur in any existing non-sequential
model since

— Edges are generated independently

— Community imposition (e.g. though factor
models) is too coarse

e Quridea:

— Group the nodes together into a large number of
small near-cliques

— Link those groups together randomly
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Q.
BTER: Block Two-Level ER

with y=1.90

e Phasel BTER with p=1.25, ¢=0.60 fitting power law

— Create near cliques via ER T T R
with a high probability such 1000
that phase 1 degrees do not
exceed desired degrees
102 . ‘ 4000 _
bosired Degros 5000,
6000
E o 7000
a
8000 {2
9000 f.5
o 2000 4000 6000 8000 10(')00— 10000
Vertex AR bigfl 3 S Ed A s Mg 2 4 v, S
e Phase 2 0 2000 00=2g%%% 8000 10000

— Fill in the remainder of the
degree distribution using a
weighted ER approach
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Phase 1

 Create blocks
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BTER Details

Phase 2

Sort the nodes by degree .

— vl =first node in clique
— v2=vl +round(ad(vl))

— n=v2-vl+1 (blocksize)

— Create an ER-graph of size n with the
specified link probability p

high clustering ™
coefficient

00 -
400
300+

200

k.

100

0

Goal of Phase 1 is a

0

Block size distribution:

Lots of small blocks and |

just a few large blocks.

10

20 30 40 50 60

70

Creates weighted ER graph to fill in
the remaining degrees.

Create half-edges for all nodes
Randomly match

Remove duplicates & self-edges (for
both phases)

Repeat

Goal of Phase 2 is matching degree
distribution and a low diameter



POWER LAW DEGREE DISTBUTION:
PHASE 1 VS PHASE 2
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Power Law Degree Distribution

o Power Law o
s Degree Distribution s Degree Distribution
10 — - : y=1.9 10 — - :
Desired C BTER
o BTER || d.,, =100 % Phase 1
Phase 2
@ O
10°} . : BTER 10% £ Phase 1 and .
o p=0.6 * o Phase 2 combine
"o o=1.25 96% for the correct
E ol “e _ S o2l % distribution
o) OO 8 10 *Kep .
@) "
%,
| BTER matches the 1
10 + . 10"+
! desired degree 0
distribution nearly »
exactly.
100 0 I 1 100 0 I 1
10 10 10 10
Degree Degree
8/9/2011

Kolda - Graph Exploitation Workshop

12



0.7 ;
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BTER has High Clustering Coefficient

Clustering Coefficient

Graph Nodes Edges LCC DIAM GCC
BTER 10925 40272 75% 18 0.24
Phase 1l 10925 21950 1% 2 0.59
Phase 2 10925 18322 48% 12 0

Note: Diameter is for the LCC and just an
upper bound based on 500 random walks.
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" “Eigenvalues Determined by Phase

Scree Plot
45 —¢ T T !
* BTER
* Phase 1
40 o %  Phase 2]
Observe: 351
Eigenvalues of s
. 30+
the final BTER T
model are very 2.5 %
(0]
close to those of & *
Phase 1. 201 ¥ .
* 5
15 ¥y
¥
* ¥ x
***%****%%**%*x*%**%x*%
50 5 1I0 1I5 2‘0 25
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REAL DATA: DBLP CO-AUTHORSHIP




Matching to Real Data: DBLP 2000

DBLP Co-Authors in 2000
71, 390 Authors
253, 908 Links

Compare to Weighted ER,
which does an edge matching
to get the desired degree
distribution.

Both BTER and Weighted ER
match the degree distribution
perfectly.

Count

G
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Degree Distribution

10
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Weighted ER
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BTER’s CC matches DBLP 2000

Graph Nodes Edges LCC DIAM GCC
DBLP-2000 71389 253908 38% 34 0.65
BTER 71389 253908 73% 60 0.58
Weighted ER 71389 253908 98% 20 0

Very close match between real
data and BTER in terms of global
clustering coefficient (GCC).

BTER
p=0.8
a=1.15

Avg. Clustering Coefficient
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~ BTER E-vals and Assortativity for DBLP 2000

Scree Plot Assortativity
50 T T T T 50 T T **I
* *  DBLP-2000 *9%6
451 % BTER | 451 *  DBLP-2000
% \Weighted ER % BTER e
L *  Weighted ER
a0l p 40 g
o
s * Observe the close g
L * O
" match of the 2
ERN * eigenvalues. °
o )
g * ¥ >
(0] [0
u‘_i’ 25+ 5 ¥ * D
- *x ok g)
201 **i**** | %
* % ok % i ¥ x ¥ o
51 REEEEE $33F z
10+ .
S I I T
5 1 1 1 I 0 I L 1 W * 1
0 5 10 15 20 25 0 10 20 30 40 50 60
Degree
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BTER AND SKG ON CA-HEPPH
(CO-AUTHORSHIP DATA)
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~ " 'BTER and SKG Comparison: CA-HepPh

Power Law Fit Degree Distribution
4 4
107 ‘ 10 ‘ .
' —o— ca-HepPh O  ca-HepPh
—%— Power Law = 1.69 *  BTER-PL
*  BTER-EXACT
g:; 3@ ® ® % * SKG
107t E 10°F ¥ 1
: . * ® ;ﬁ**

Iy
In order to it

I=
10°} redu;e th? ] 3 10°  Observe the & ]
numbero flexibility of
parameters to BTER in terms
specify BTER, we of matching
10'+ can use a power 10"+ .
b . various
law estimate of degree
the c'Iegrfee distributions.
distribution.
10° 0 v 3 10° 0 X
10 10 10 10 10 10
Degree
Power Law Fit Code from:
A. Clauset, C.R. Shalizi, and M.E.J. Newman, "Power- M ﬂ
law distributions in empirical data" SIAM Review 51(4), T=[0.42,0.19; 0.19, 0.21] p=0.6
661-703 (2009). (doi:10.1137/070710111) K=14 o =175
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BTER has better clustering () e
coefficients than SKG

Clustering Cosficient Graph Nodes Edges LCC DIAM GCC

1 . il ca-HepPh 12008 237010 93% 14 0.66
X *  ca-HepPh

bof & ™ v mrEmeL BTER-PL 13687 225250 100% 10 0.29

b BTER-EXACT BTER-EXACT 12008 235772 100% 10 0.36

0.8 o ¥ L * SKe SKG 16384 236109 99% 8 0.01

 BTER better than SKG for high CC
— SKG GCC=0.01!

Avg. Clustering Coefficient

e BTER captured behavior in data

— This was not part of the fitting
procedure

— Note diameter is also a good fit

0 100200 300 400 500 * Exact degree distribution better
than PL estimate
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_ BTER also better in terms of e-val )

Seaw il : e o
and assortativity for CA-HepPh
Scree Plot Assortativity
250 ¥ T . T 300 T " .
*  ca-HepPh *  ca-HepPh
* BTER-PL * BTER-PL
* BTER-EXACT | % BTER-EXACT |
* % SKG 250
200 ] . % SKG
o
e}
ye)
g 2007 * * |
=z *
o 190 % 4 <
2 ®
© [} e
= & 150 1
g g *
~ 100t ] o
* x 1
¥ " ¥ w 100
* .
kI >
€ < A
50 Bx Kok, . A
#* T
* i*%%** FH KK Ky 4 >
¥ 3 s s % ¥ ¥
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0 5 10 15 20 25 0 100 200 300 400 500
Degree
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BTER AND SKG ON CIT-HEPPH
(CITATION DATA)



X ~ "BTER compared to SKG ) .
~ 0N a citation network CIT-HepPh

We worked with a symmetr/zed version of this data and the SKG results.

. Power Law Fit . Degree Distribution
10 ' . 10 . .
—o— cit-HepPh O  cit-HepPh
—*— Power Law = 3.50 * BTER-PL
*  BTER-EXACT
*  SKG
3&
107
5 10%}
O *
10"}
107
10
Degree
RMAT BTER
T =[0.43, 0.19; 0.15, 0.23] 0=0.5
K=14 a=1.25
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~ "CIT-HepPh Clustering Coeff. Comparison
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Clustering Coefficient
0.45 . ‘ . Graph Nodes Edges LCC DIAM GCC
i g_tl_ggpppr cit-HepPh 34546 841798 100% 12 0.15
04% ©  BTER-EXACT!] BTER-PL 34934 855880 100% 10 0.18
* _SKG BTER-EXACT 34546 841734 100% 10 0.16
= SKG 32768 924017 100% 6 0.01
S
=
3
O
g
o
e
O
2
<
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-:"CfT-He‘bPh E-vals and Assortativity

Scree Plot Assortativity
140 . T 200 : | .
*  cit-HepPh *  cit-HepPh
% BTER-PL 180 - % BTER-PL |-
¥ *  BTER-EXACT *  BTER-EXACT
120 % SKG ] 1601 *  SKG _
2]
g
< 140t 1
100} * ] 2
z
oy 5 120+ 1
=}
© % 8
£ 80r . & 100+ * 1
S * * % a *
= * % S 80
* * ES é E
60 * 5 1 =
*Ff S 60
¥ % g :
AL LTI “ 4o}
40t FEEX e -
*
0 5 10 15 20 25 800 1000
Degree
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MORE EXAMPLES OF MATCHING
REAL-WORLD DATA
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) & Cornpa rison on Social Network
, Degree Distribution Clustering Coefficient
BTER 10 Ja 0.8
LALALSIN r= *  Wellesley22
p=0.6 ® 2 8 @ é ‘ % BETR
a=1.25 o8 % 3 00
' " ®e : S 3k nodes and 190k edges
3 10'} _ 204 LCC = 100% for both
© - ko) DIAM = 8 (real) vs. 6 (BTER)
b E =0. .0.
O Wellesley22 3 02 GCC=0.2 (real) vs. 0.3 (BTER)
# BETR p— .5?
10° 5 X S 0 ]
10 10 10 10 0 200 400 600 800
Degree Degree
Scree Plot . Assortativity
180 E 200
*  Wellesley22 < ¥ Wellesley22
# BETR T *
* g 150% b, BETR |
© 100F " k] E e .
= ®
m * @ = %
Z * = | - #*
& | *x, *ry g
w50 ****::***iﬁ 5
TRk z 50
Foddrew g ypny =
0 : 2 0
0 5 10 15 20 25 < 0 200 400 600 800
Degree
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~ “ Comparison on Social Network

BTER
p=0.6
a=1.25
§
F]
&
2
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Degree Distribution

10
& O Santa74
#* BETR
10'}
10° ' s S—
10 10’ 10° 10° 10"
Degree
Scree Plot
200
*  Santa74
#* BETR
150
*
| *
100 ¥, *
¥k:**¥
50} * ¥ * ¥ * 4 _ 4
FEEE g
0 1 i i i
0 5 10 15 20 25
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Avg. Clustering Coefficient

Avg. of Avg. Degree of Neighbors

e o o o
[§] B n

o
—

Clustering Coefficient

* BETR

#  Santa74 l

3.5k nodes and 303k edges
LCC = 100% for both
DIAM = 8 (real) vs. 6 (BTER)
GCC=0.2 (real) vs. 0.3 (BTER)

1500

1000 2000
Degree
Assortativity
*  Santa74
* BETR
500 1000 1500 2000

Degree
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““"Comparlson on Social Network

‘

egree Distribution ustering Coefficient
) D Distributi Cl ing Coeffici
BTER 10 038
— O Calés = #  CalB5
p=0.6 £ # BETR 2 # BETR
a=1.25 102 i F e, oo ] 0.6
’ » O 11k nodes and 703k edges
5 2 LCC = 100% for both
=] £ 04
o o DIAM = 8 (real) vs. 6 (BTER)
10 3 =
3 02 | GCC=0.2 (real) vs. 0.3 (BTER)
=~ :
=
10° - - DS S
10° 10 10° 10° 0 100 200 300 500 600
Degree Degree
Scree Plot . Assortativity
200 E 300
" *  Calgs <
¥ BETR g 290
150 z
) * % G 200
© * % @
2 2
2100f , K, 5 150
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'~ Comparison for SNAP Data

. Degree Distribution Clustering Coefficient
BTER 10 eL — L —
- _ O soc-Epinions1 s #  soc-Epinions?
p=0.6 » # BETR S #* BETR
=1.25 g °
=21 _ 3 76k nodes and 442k edges
é g’ LCC = 65% (real) vs 91% (BTER)
© 2 DIAM = 16 (real) vs. 18 (BTER)
= =
. 3o GCC =0.1 (real) vs. 0.2 (BTER)
ke o
& = =
10° , |3 b < b, o i 3
10° 10" 10° 10° 10* 500 1000 1500 2000
Degree Degree
Scree Plot . Assortativity
200 E 300
#  soc-Epinions1 < #  soc-Epinions1
* * BETR 3 290 * BETR
150 =
g o 200t
g 100+ ***& > 150
D * o
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50 Tt o F R ey g g ] Z '
R R R L T PR kok K08 5. 5 9
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Degree
8/9/2011 Kolda - Graph Exploitation Workshop 31



CONCLUSIONS AND FUTURE WORK
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Scaling for Large Simulations

 Phase 1 is easily parallelized

— Assign every pth node to processor p

* Phase 2 requires one data exchange
— Each processor exchanges “half-
edges” with the other processors

* Smaller-scale exchange at the price of a
higher diameter

— Can avoid the exchange altogether
and instead do a match based on
expectations

* Lower accuracy in matching the degree
distribution

 Hadoop MapReduce implementation
coming soon
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Conclusions and Future Work

BTER with p=1.25, a=0.60 fitting power law with y=1.90

RET: EORERE

Contacts
T. Kolda, tgkolda@sandia.gov

. BTER meets all of our desired criteria

— Match a variety of degree distributions 1000 .
200

— Community structure, as evidenced by high

. . . 300 .
clustering coefficient sl C. Seshadri, scomand@sandia.gov
— Large connected component of small diameter 5000k A. Pinar, apinar@sandia.gov
— Scalable to large problems (not yet verified) 6000 o
7000 |

. Future Work

— Parallel implementations 9000
10000

8000

* MapReduce (data exchange is just one pass) %
« MPI (size of data exchange matters more in this case) 0 2000 4°°°nz _2‘;%%% 8000 10000
H H H Degree Distribution Clustering Coefficient
— Theoretical underpinnings 10° os
c * Wellesley22
. C . . 1 ° 565 ‘:éoe ‘
*  Block size distribution ® 2, S Nk 3
2 10’ o4
, - 3 g
* Clustering coefficients s & 02 -
. % BETR puiy ) e 3, .
* Eigenvalues " <, _—
10° 10' 10° 10° 0 200 400 o 800
i H Degree Degree
— Investigate tuning of p and a s ) pssortatiy
150 % 5
. . £ Wellesley22 = ¥ Wellesley22
* Vary p and a with the degree of the clique ' g * BETR
T 100 5
E * 2 *
*  Tuning block sizes, block membership, and H , 5
@ * e K o
parameters to real data o 50 ’ f‘-‘ffm*”” H
) E2 2+ % %5
— Propose BTER as a candidate for Graph 500 % 5 W @ s <% 200 400 500 800
Degree
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EXTRA SLIDES
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Erdos-

Unweighted

* Given: Fixed edge probability, p
* Version 1: PROB DENSE

— Flip independent p-coin for each
edge

* \Version 2: PROB SPARSE

— Pick two vertices uniformly at
random to create an edge

— Create pN? edges
— Omit duplicates & self-edges
* \Version 3: DEGREE_MATCH

— Assign every edge a degree of
roor(pN) or cell%pN) so that total
edges =

— Create haIf—edges for all nodes
— Randomly match

— Remove duplicates & self-edges
and repeat until stuck

8/9/2011
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Rényi (ER) Graphs

Weighted (Configuration Model)

Given: Degree distribution, d.
M = sum(d) = # edges.
Version 1: PROB DENSE

— Flip independent coin for each
edge according to p; = d,d/M

Version 2: PROB SPARSE

— Pick two vertices according to

— Create M edges

— Omit duplicates & self-edges
Version 3: DEGREE  MATCH

— Create half-edges for all nodes

— Randomly match

— Remove duplicates & self-edges
and repeat until stuck
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Outline

Some motivations for graph models, highlighting those
that matter to us

Our 3 main goals
Limitations of current graph models
A note on “ER” graphs

Our model — general description, SPY plots, block size
distribution, etc.

Our model vs WER

Our model vs R-MAT

Theory: # blocks, cc, diameter
Scaling up

Examples with scaling??
Conclusions
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Limitations of Current Models

Configuration Models [CITE]
Exponential Random Graphs [CITE]

Multifactal Graph Generator [Palla, Lovasz,
Vicsek, PNAS 2010]

— Not scalable (MC to match degree or CC distribution)

Stochastic Kronecker Graphs [CITE]

— Scalable!

— Limited to lognormal degree distribution (with noise)
— Very small clustering coefficients



