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B. Extracting Localized Strain by DIC

In recent years, DIC, also known as speckle correlation,

has become widely used for noncontact spatially-resolved

strain mapping. The technique has been applied to a wide

range of problems in the mechanical behavior of materials,

resulting in over 50 archival journal publications on DIC

in 2005. Some examples include the measurement of

strains associated with the hole drilling method for residual

stress determination,
[11]

assessment of inhomogeneous

strain fields in forming studies,
[12]

and measurement of

strains in microelectromechanical systems and other small

structures.
[13]

The DIC technique has been used in the field of joining

to determine the mechanical behavior of friction stir welds

in aluminum alloys.
[14–18]

These previous studies on friction

stir welded material interrogated much coarser weldments,

with weld nuggets several millimeters in diameter, as

opposed to the laser welds of the current study, which are

#650 mm in width. These studies demonstrated the utility

of the DIC method to (a) extract the local material proper-

ties from different regions in the weldment in order to

construct finite element models with graded material prop-

erties, and (b) connect global macroscopic mechanical per-

formance to local mechanical properties. The current study

seeks to extend this characterization technique to con-

siderably finer weldments and compare the mechanical

performance of welds produced with different techniques:

specifically continuous wave (CW) and pulsed wave (PW)

laser welds.

For this work, a commercially available DIC algorithm

was used. Vic-2D fromCorrelated Solutions (West Columbia,

SC) is a two-dimensional (2-D) displacement and strain

analysis package using full-field DIC. In this algorithm,

the 2-D displacement field is represented by a uniform

parametric B-spline surface function with unknown coeffi-

cients. The surface function coefficients are iteratively opti-

mized using the Levenberg–Marquardt method to minimize

the disparity in image intensity between the actual and

predicted deformed images.

For this analysis method, the deforming surface of inter-

est must have a random grayscale pattern often referred to

as speckles. An image capture device, mounted so that the

optical axis is perpendicular to the deforming surface, is

used to collect an initial reference image and a sequential

set of images of the deforming surface. The analysis pro-

ceeds sequentially, using the deformation field computed

from the previous image as an initial guess for the defor-

mation field of the subsequent image. The DIC technique

provides a spatial map of deformation or strain only at the

surface of the sample and provides no information on sub-

surface strain. The 2-D DIC technique used in the current

study uses a single image plane to map a 2-D deformation

field, thereby providing only the in-plane strain compo-

nents, exx, eyy, and exy. This in-plane strain field is appro-

priate in the current case of planar tensile bars with

negligible triaxial necking. For more complex cases involv-

ing three-dimensional (3-D) surface deformation, a 3-D

variant of the DIC technique uses two cameras at oblique

angles to one another, thereby yielding a measure of all

three normal strain components and their shear counter-

parts. Further details of the numerical implementation of

DIC as well as potential error sources of the method can be

found in Reference 19.

II. MATERIALS AND METHOD

A. Laser-Welded 304L Stainless Steel

The base material used in this study was 1.6-mm-thick

(0.063-in.) AISI 304L stainless steel sheet with a composi-

tion of 0.024 pct C, 0.45 pct Si, 1.83 pct Mn, 0.030 pct P,

0.001 pct S, 18.2 pct Cr, 8.3 pct Ni, 0.041 pct N, 0.42 pct

Cu, 0.16 pct Mo, and balance pct Fe (Avesta Polarit,

Richburg, SC, AOD refined, heat 17,100). Pairs of 50 3
100-mm (1.9 3 3.9-in.) plates with a thickness of 1.6 mm

(0.063 in.) were joined along their long axis to produce 1003
100-mm (3.9 3 3.9-in.) plates with a single laser butt weld.

The base material was welded in the fully mill-annealed con-

dition, with no postweld heat treatment.

Fig. 1—Cross-sectional metallography of the laser-welded structures for

(a) CW weld and (b) PW weld. Note the spherical black pores present in

the PW condition. The black region at the bottom of the micrographs

shows a portion of the unwelded gap between the two plates. The white

boxes indicate the approximate location of the EBSD scans in Figure 2.
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and [110] compression, and [100] compression and [110] tension. Also, c1 and c2 had same effect on

max(Ptot) in tension and compression for [149] loading axis.

3. Crystal Plasticity Formulation

Generalized yield law described in the previous section is implemented into a nonlinear CP-

FEM code (JAS-3D) developed at Sandia National Laboratories (Biffle, 1987). The kinematics of

the crystal plasticity model is based on well-established continuum formulations (Lee, 1969; Rice,

1971; Hill and Rice, 1972; Peirce et al., 1982; Dingreville et al., 2010). The model is based on a

multiplicative decomposition of the total deformation gradient at a material point within a crystal

(Lee, 1969).

F = Fe · Fp (16)

Here, Fe represents elastic distortion and the rigid body rotation of the crystal lattice while Fp is

the plastic part based on the crystallographic slip via dislocation motion. The velocity gradient

can be written as follows:

L = Ḟ · F−1
(17)

where Ḟ is the rate of change of the total deformation gradient. Assuming that the plastic de-

formation is caused only by the dislocation slip, the velocity gradient can be expressed as follows

(Asaro, 1983):

Lp =

�

α

Pαγ̇α (18)

For a rate-dependent framework, γ̇α can be represented as a power-law function of resolved

shear stress, τα and slip resistance, gα (Hutchinson, 1976):

γ̇α = γ̇α0

�
τα

gα

�1/m

(19)

Here, γ̇α0 is the reference shear rate and m is the rate sensitivity factor. In this work, γ̇α0=1 /s and

10

m=0.012 is adopted and assumed to be identical for all 24 {110} �110� slip systems (Table 2). Note

that this work focuses on the low-temperature plastic deformation of BCC metals, within Regime

II, where the temperature is below the critical temperature which the metal exhibit thermally

activated flow. The slip resistance, gα, in Regime II can be written as follows (Weinberger et al.,

2012):

gα = max (ταcr − ταns, 0) + ταobs (20)

Here, ταcr, τ
α
obs and ταns represent slip resistance due to lattice friction, obstacle stress and non-Schmid

contribution for slip system α, respectively. ταobs represents resistance to dislocation motion arising

from forest dislocations and any other defect. Note that max operator in equation (20) avoids

lattice friction to become negative. In this work, it is assumed that ταcr is constant throughout the

deformation while ταobs builds up and contribute to work hardening. Two simple hardening laws

are considered to represent the obstacle stress: isotropic power-law hardening (Ludwik, 1909) and

dislocation density-based hardening (Taylor, 1934; Lee et al., 2010).

ταobs = k0 + k1�
k2 (21)

ταobs = αµb

����
NS�

β=1

ρβ (22)

Here, k0, k1, and k2 are fitting parameters, α is a material constant usually in the range of 0.3 - 0.6,

µ is the shear modulus, b is the Burger’s vector, NS is the total number of slip systems, and ρβ

is the dislocation density in slip system β. More complicated dislocation density-based hardening

models that considers detailed dislocation-dislocation interactions have been appeared (Franciosi

and Zaoui, 1982; Kubin et al., 2008; Devincre and Kubin, 2010). These models, however, require

fitting of many hardening parameters and not adopted here to keep the model as simple as possible.

The total dislocation density for α-th slip system is obtained by using a standard phenomenological
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equation as follows (Kocks, 1976):

ρα =



κ1

����
NS�

β=1

ρβ − κ2ρ
α



 · |γα| (23)

where, κ1 and κ2 are material parameters representing generation and annihilation of dislocations,

respectively.

4. Orientation-Dependent Yield Stress of Single Crystals

The total stress projection tensor, Ptot in Equation (11), can be used to predict required stress

to initiate yield of a single crystal. For example, by assuming τcr is same for all slip systems, stress

required to initiate slip upon applied stress tensor, σ, can be obtained from the following equation:

τcr + ταobs = P
α
tot : σ (24)

In the cases of uniaxial tension or compression, yield stresses in uniaxial tension and compression

can be obtained as follows:

σy =
τcr + ταobs
max(Pα

tot)
(Tension) σy = −

τcr + ταobs
min(Pα

tot)
(Compression) (25)

Here, ταobs can be regarded as an initial contribution of obstacle strength or an athermal part of the

resolved shear stress found to be around 53 MPa, 12 MPa, and 19 MPa for molybdenum, tungsten

and tantalum, respectively (Hollang et al., 2001; Brunner, 2000; Butt et al., 2009).

Table 3 lists measured yield stresses of molybdenum, tungsten and tantalum for various crystal

orientations upon uniaxial tension and compression with a nominal strain rate of 10
−3

/s at 77 K.

Using sets of measured yield stresses for each reference, best-fit non-Schmid constants and τcr are

obtained by least squares fitting procedure as listed in Table 4. It is assumed that crystallographic

slip occurs on 24 �111� {110} slip systems. Non-Schmid constants are limited by two conditions:

First, a slip system that has the maximum Ptot cannot have Ps less or equal to zero. This is

numerically possible in Equation (11) but violates Equation (19). Secondly, sets of non-Schmid

constants should not make max(Ptot) = 0 for any loading axis. If max(Ptot) = 0 is satisfied for

13
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Slip	
  Planes	
  –	
  Strain	
  Distribu.ons	
  



Texture	
  Evolu.on	
  

(a) 24 {110} slip systems (b) 24 {112} slip systems (c) 48 {110}{112} slip systems 



Deformed	
  Shapes	
  



Conclusions	
  
•  Numerous	
  studies	
  indicate	
  good	
  qualita.ve	
  

agreement	
  –	
  the	
  “trends”	
  are	
  correct	
  –	
  but	
  the	
  
quan.ta.ve	
  details	
  are	
  ojen	
  missing.	
  

•  CPFEM	
  simula.ons	
  appear	
  to	
  predict	
  grain-­‐scale	
  
strains	
  accurately	
  (rela.vely)	
  
–  Rela.vely	
  insensi.ve	
  to	
  mesh	
  size	
  &	
  slip	
  planes	
  
–  Does	
  depend	
  on	
  through	
  thickness	
  

•  CPFEM	
  simula.ons	
  predict	
  texture	
  evolu.on	
  
moderately	
  well	
  
–  Missing	
  some	
  details	
  
–  More	
  mesh	
  sensi.ve	
  than	
  strains	
  

•  Sub-­‐grain	
  deforma.ons	
  depend	
  on	
  many	
  factors.	
  
Thus	
  the	
  details	
  of	
  deforma.on	
  depend	
  on	
  the	
  
details	
  of	
  the	
  experimenta.on	
  and	
  simula.on.	
  

•  What	
  level	
  of	
  agreement	
  /	
  valida.on	
  can	
  we	
  
reasonably	
  expect	
  from	
  models	
  of	
  this	
  class?	
  

•  More	
  work	
  is	
  needed	
  to	
  “dot	
  i’s	
  and	
  cross	
  t’s.”	
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