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Abstract. The shockless compression of a cylindrical liner Z-pinchxplored as a method to obtain high
pressure (10’s of Mbar) states while minimizing the entrppyduction in the target material. Experiments
with beryllium liners on the Z-machine resulted in radiggni profiles at four different times in the
liner's trajectory. From these results, we infer the londihally and azimuthally averaged material density,
material pressure, and magnetic pressure along with theiemtiainties. By combining these results with
magnetohydrodynamic simulation, we obtain a pressuraugatsnsity response in solid beryllium up to 2.4
Mbar. We conclude that the pressure versus density resgonseaterial samples in the 10 Mbar range is
achievable on the Z-machine with improved radiographiabéjty.
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INTRODUCTION

Pulsed power drivers, such as the Z-machine at
Sandia National Labs[1], have recently been uti-
lized as platforms for performing dynamic materi-
als experiments[2, 3]. The ability to achieve megabar
drive pressures with a magnetic field, along with
the capability to control the shape of the cur-
rent drive over many hundreds of nanoseconds, has
proved valuable for both shock[4, 5] and ramp
compression[6] experiments in the high energy den-
sity regime. The bulk of these magnetically driven
dynamic materials experiments on Z have been per-
formed in divergent geometries[7, 8] for whi¢h[

% whereP is the drive pressurd, is the drive cur-
rent, and_g is a constant scale factor dependent upon
the initial geometry of the system. In this configu-
ration, the current carrying anode and cathode are
pushed away from each other and the drive pres-
sure will never exceed this idealized scaling. How-
ever, for dynamic materials experiments performed
in a convergent magnetic geometry(] ? wherer

is the radius of the current sheet. In cylindrical geom-
etry, this is commonly referred to as a Z-pinch and

its application to ramp and shock compression ex-
periments on sub-microsecond time scales remains
unexplored. In this paper, we present and analyze
experimental results for convergent ramp compres-
sion experiments on the Z-machine in a cylindrical
Z-pinch configuration. The geometric convergence
inherent in this load design has the potential to in-
crease the maximum achievable drive pressure, as
compared to divergent geometries, in magnetically
driven ramp compression experiments. However, the
convergent nature of the target also makes diagnos-
tic access of the sample more difficult and precludes
the use VISAR diagnosed multi-sample techniques
currently utilized on the Z-machine. These difficul-
ties associated with convergent geometries necessi-
tate the development of new diagnostic and analysis
techniques to determine the pressure in the sample.
We now briefly discussion the experimental results
and present an analysis technique that allows for the
inference of the sample pressure from multi-frame
monochromatic backlighting of an imploding cylin-
der.



EXPERIMENT AND ANALYSIS

The target is an aspect ratio four beryllium liner
with an initial inner radius of 3%m, thickness of
800um, and is 065cmtall. The beryllium liner is di-
rectly driven with a current pulse shape with a time
rate of change in the drive pressure avoids shock for-
mation in the liner[4] and reaches a peak current of
approximately 2MA. This pulse shape is based on
the LANL SESAME Be2020 equation of state. Dur-
ing the liner implosion, current flows on the outer
surface of the liner and a magnetic diffusion front
propagates radially inward toward the free surface,
ahead of any thermal conduction. Eventually the
magnetic diffusion front will contaminate the inner
surface of the liner such as to limit the peak pressures
achieved in the magnetic field free solid. M di-
ameter tungsten rod is located inside the cylinder to
serve as a fiducial and to limit self emission of the
liner at stagnation. The imploding liner is diagnosed
with a two-frame 6lkeV monochromatic radiogra-
phy system[9] with ks temporal resolution. The de-
tector is a Fuji BAS-TR2025 image plate which af-
ter six times magnification has a spatial resolution
of order 1%um. Figure 1 shows the normalized trans-
mission levels at the earliest and latest radiographed
times. Since only two-radiographic frames are avail-
able per experiment, the experiment is performed
twice with radiographic frames acquired at machine
times 3027us, 3.035us, 3.046us and 3050us. The
load current of the two experiments was repeated to
within 2 percent as determined by VISAR unfold[4].
Our goalisto infer the pressure-density state of the
quasi-isentropically compressed liner inner surface
from the experimental radiography. This approach is
broken down in to two steps. The first step is to deter-
mine the mass densities and their uncertainties from
the radiographs. Given the density profiles and their
timings, we then directly integrate the mass and mo-
mentum conservation relations to determine the total
pressure. This approach will ultimately lead to larger
uncertainties in the inferred pressure state than is reg-
ularly achieved in a coaxial drive geometry. How-
ever, the convergent nature of the target makes field-
ing VISAR to measure the free surface velocity dif-
ficult and would limit the achievable pressures from
convergence, so this precludes the use of character-
istics based methods. Another complication arises
since regions of the sample that have passed through
the magnetic diffusion front have been Joule heated.
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FIGURE 1. Radiograph transmission levels for the ear-
liest and latest times of the ramp compressed beryllium
cylinder ata)3.027us and b)3.050us. The outer vertical
and inner vertical lines denote initial outer and inner radi
of the cylinder.

Since no diagnostic is available to determine the lo-
cation of the magnetic diffusion front, we rely on
Alegra[10] simulation to provide an upper bound on
its radial location.

The first step in our analysis procedure is to deter-
mine the mass density versus radius from the image
plate scans. The coordinate system and magnifica-
tion factor for the experiment are determined from
the know size and position of the tungsten rod on
the axis. Next, the intensity gradients in the zero per-
cent transmission fiducial region and one-hundred
percent transmission region are removed by subtract-
ing the least squares fit of a plane over each respec-
tive region. The image is then normalized to trans-
mission, utilizing the tungsten rod region to define
zero percent transmission and the region beyond the
initial outer liner radius to define one-hundred per-
cent transmission. Because each radial transmission
line is has a low signal to noise ratio, the transmis-
sion levels are axially averaged over the height of the
cylinder. This provides a mean intensity profile ver-
sus radius. We use the two-point Abel inversion of
Dasch[11] to transform from the axially averaged ra-
dial intensity profile to an absorption coefficient
with units of inverse length. The average opadiy,
of the liner is then determined from the mass of the
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FIGURE 2. Abel inverted density profile from radio-
graphain Figure 1. Dot-dash lines delineate the first five
mass binsry wherei € {0,4} over the liner’s inner surface.

cylinder’s initial stateMiner USINg equation 1.

Miiner

K=——

iy

The axially averaged mass densiiyr) is calcu-
lated by dividing the absorption coefficieatby the
average opacitk. In going from intensity to mass
density, uncertainty analysis shows that the random
error is dominated by the uncertainty in the aver-
age opacity value and the noise amplification from
Abel inversion. The uncertainty in the mean opac-
ity can be estimated from variation in equation 1 by
propagating the uncertainties in the Abel inversion

through the integral. The mean opacity increases in

time and has a minimum value of:%%‘z in the first

radiograph and a maximum value of6,‘§gﬁ in the
final radiograph. The uncertainty in the Abel inver-
sion is estimated through inverting each radial line
in in the intensity profile before averaging and then
calculating the standard error of the radial absorption
profiles. The combined uncertainties for the density
profile are shown in Figure 2 for the earliest radio-
graph. Each of the four frames gives an average un-
certainty in the density of order eight percent and the
inferred density profiles are consistent with Alegra
simulation.

Given the radial density profiles and timings we
now want to infer the total scalar pressure in the
sample. The basis for this inference is to utilize a
surface fitting methodology similar to reference[12].
This surface fitting procedure is performed under the

1)

assumption that the entropy increase due to plastic
flow is negligible, that the experiment is independent
of grain orientation, and that the implosion is axi-
ally symmetric. We begin by writing the equations
for mass conservation (equation 2) and momentum
conservation (equation 3) with respect to the mate-
rial derivatives of the mass densjtyand velocityu,
whereP is the scalar pressure. Our goal is the map
the radial density profiles from the experimentonto a
collocated mass grid and then numerically differen-
tiate and integrate the equations in this transformed
coordinate system.
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Next we transform equations 2-3 into the mass
coordinates using equation 4, whéergis the height
of the cylinder.

dm=2nLprdr 4)

This transformation to cylindrical mass coordinates
gives the rate of change of the specific voluma
terms of the radial velocity, (equation 5) and the
rate of change of radial velocity in terms of the total
scalar pressure.
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To numerically evaluate equations 5-6 the radial den-
sity profiles from the experiment are then mapped
into a discrete mass coordinate system. Twenty bins
of of equal massn are used to create the grid on
which the specific volume will be time differenti-
ated. The mapping to a mass coordinate is calculated
with low-order numerical integration in conjunction
with a root-finding scheme which repeatedly eval-
uates the integral from a starting coordinatdo a

ri+1 such tham = '\fﬁ‘ﬁ The first five of these bins
are marked by vertical lines in Figure 2. The uncer-
tainty in the radial density profile limits the mini-
mum oM of the mapping since the uncertainty of the
mapping is cumulative. This will ultimately limit the
number of grid points available for calculating the




pressure. With each density profile mapped to a com-
mon coordinate system, we can now directly inte-
grate the mass conservation and momentum conser-
vation equations. The semi-discrete numerical form
of these equations are given for radial velocityand

total pressuré in equations 7-8.

1 /M+a 1 Jv
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B M1 1 Jduy
P(my1) = —/m mﬁdm—i‘ P(m) (8)

The evaluation of the semi-discrete equations be-
gins by approximating the radial velocity of the in-
ner surface for binmg with a cubic B-spline fit in
time of the liner inner radius. This serves as the initial
condition,i = 0, for integration of equation 7. Next,
the time derivative of the specific volume is numeri-
cally evaluated for each mass liimby fitting a cubic
B-spline through the four different times. Simpson’s
rule is then used to evaluate the integral over each
bin from m; to my. 1. After the radial velocity profile
for each mass bin is determined, this procedure is re-
peated to determine the radial pressure profile. The
inner surface pressure boundary condition forioin
is assumed to be zero. Figure 3 shows a comparison
between the Be2020 reference isentrope, the pressure
unfold applied to the Alegra density profiles, and
the unfolding procedure applied to the experimental
density profiles. The unfold of from the simulation
driven with the measured load current uses density
profiles at the radiograph times of the experimet, the
same timings of the radiographs, and the same to-
tal number of mass bins. The divergence of the in-
ferred pressure from the isentrope for the simulated
and experiment cases is consistent with the presence
of magnetic field in the ablated portion of the liner.
The magnetic pressure increases the total scalar pres-
sure inferred since equation 8 makes no distinction
between hydrodynamic and magnetic pressure. The
uncertainties for the experimental pressure are esti-
mated using Monte Carlo uncertainty analysis where
the inputs to the pressure unfold procedure, the ra-
dial density profiles and radiograph times, are varied
about their assumed normally distributed uncertain-
ties. The variation in the inferred pressure is tracked
and is shown in Figure 3 as a one sigma uncertainty.

We have presented the experimental results for
ramp compression of a beryllium cylinder on the Z-
Machine to approximately 2.4MBar. A procedure is
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FIGURE 3. Plot of the reference Be2020 isentrope, sur-
face fitting method applied to simulated density profiles,
and surface fitting method applied to experimental density
profiles. Divergence from the isentrope is due to magnetic
pressure in the sample.

presented for determining the mass densities along
with their uncertainties from the experimental data.
A surface fitting methodology is utilized in conjunc-
tion with Monte Carlo analysis to determine the sam-
ples pressure and corresponding uncertainties. Fu-
ture, higher pressure, experiments are possible with
a higher energy backlighter.
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