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Pd-H System

* Most extensively researched M-H system (~150 y)
« High solubility and mobility of hydrogen in fcc Pd lattice

* H occupies vacant octahedral sites with Pd,H stoichiometry accompanied by a lattice
expansion

* ~0.6 mol H/mol Pd near room temperature at P ~ 10 — 20 mmHg

 Useful in H, storage, catalysis, electrochemical, chromatographic/membrane isotopic
separations

* Very expensive, limited to high-value applications such as hydrogen isotope storage
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' Desirable Aspects of Nanoporous
Pd and Pd alloys:

*More rapid H, transport than bulk (Chromatography)
*High surface area for electrochemical applications
*Greater tolerance to volume change

*In particular, hypothesized to stabilize Pd-3H
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8 *3He in bulk metal nucleates to form
Bubbles/M bubbles that distort the metal lattice
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Porous Pd and Pd alloys:

State of the Art and Targets for Improvement

Pd and Pd, gRh, ; alloys with 2 nm pores:

Prepared by surfactant-templated approach

Lack of pore regularity observed in pure Pd/Pd-
rich samples leads to suboptimal surface area

Pore collapse at ~150 C in pure Pd

Alloys show improved thermal stability (~400 C)
but inhomogenous Rh distribution

1) Kinetics of reduction
2) Within miscibility gap

Goals for improved material:

Higher surface area (50 m?/g ~ 100% of metal
atoms within 2 nm of surface)

Uniform composition—=> uniformly stable

Better control of nanoscale composition (Rh at the
surface) — control thermodynamics and kinetics of
hydriding

Robinson, D.B.; Int. J. Hydrogen Energ. 34 (2009), p. 5585
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Robinson, D.B.; Int. J. Hydrogen Energ. 35 (2010), p. 5423
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Pd and Pd, gRh, ; alloys with 2 nm pores:

Prepared by surfactant-templated approach

Lack of pore regularity observed in pure Pd/Pd-
rich samples leads to suboptimal surface area

Pore collapse at ~150 C in pure Pd

Alloys show improved thermal stability (~400 C)
but inhomogenous Rh distribution

1) Kinetics of reduction
2) Within miscibility gap

Goals for improved material:

Higher surface area (50 m?/g ~ 100% of metal
atoms within 2 nm of surface)

Uniform composition—=> uniformly stable

Better control of nanoscale composition (Rh at the
surface) — control thermodynamics and kinetics of
hydriding

Porous Pd and Pd alloys:

State of the Art and Targets for Improvement
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Porous Pd and Pd alloys:

State of the Art and Targets for Improvement

Pd and Pd, 4Rh, , alloys with 2 nm pores: Spectral Imaging

* Prepared by surfactant-templated approach u

» Lack of pore regularity observed in pure Pd/Pd-
rich samples leads to suboptimal surface area

» Pore collapse at ~150 C in pure Pd

 Alloys show improved thermal stability (~400 C)
but inhomogenous Rh distribution

1) Kinetics of reduction
2) Within miscibility gap
Mesoporous Pd, ¢gRh, 4, 200°C

Goals for improved material:

« Higher surface area (50 m?/g ~ 100% of metal
atoms within 2 nm of surface)

 Uniform composition—=> uniformly stable

 Better control of nanoscale composition (Rh at the
surface) — control thermodynamics and kinetics of
hydriding

Ong et al., in submission Sandia
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Dendrimer Encapsulated
Nanoparticles (DEN)
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* Dendrimers are commercially available, highly branched,
organic polymers

+ Addition of metal salts > coordinate to interior tertiary amines
» Reduction of metal yields uniform ~1-3 nm NP

* Removal of dendrimer causes sintering of NP - porous
material

» Uniform NP composition = uniform sintered material
composition

» Core/shell NP - segregation of metals at small scale with
uniformity at larger scale

Scott, Robert W. J;Wilson, Orla M.; Crooks, Richard M., J. Phys. Chem. B (2005), 692-704
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i Synthesis of DEN:

2.5~ Synthesis of DEN followed
by UV/vis spectroscopy:
20 25 uM M™ (9:1 Pd/Rh) »absorbance of aqueous metal
salts (K,PdCl, and RhCl,) at
~210 nm and ~280 nm
(O}
% 1.5 « Addition of metal salt solution
e to dendrimer solution, more
§ intense chromophore, ~240
< 10- nm
* Reduction of metal with
Broad, low intensity CI- > Mn* NaBH, (10 eq.),
0-5 LMCT disappearance at ~240 nm,
l v i intense feature at ~200 nm
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Synthesis of DEN:

2.5 4
20 - ——25 M M™ (9:1 Pd/Rh)
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Synthesis of DEN followed
by UV/vis spectroscopy:

 absorbance of aqueous metal
salts (K,PdCl, and RhCl,) at
~210 nm and ~280 nm

» Addition of metal salt solution
to dendrimer solution, more
intense chromophore, ~240
nm

* Reduction of metal with
NaBH, (10 eq.),
disappearance at ~240 nm,
intense feature at ~200 nm

Pd2*/Rh3* + G3-PAMAM —» G3-Pd2*, jRh%*,

(&)
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Synthesis of DEN:

2.5 - Synthesis of DEN followed
I\ by UV/vis spectroscopy:

25 MM (3:1 Pd/Rh) » absorbance of aqueous metal

—25 M G3-M™ (16 eq M"/G3) salts (K,PdCl, and RhCl,) at
— 25 uM G3-M" (10 eq. NaBH4) ~210 nm and ~280 nm

» Addition of metal salt solution
to dendrimer solution, more
intense chromophore, ~240
nm

Absorbance

» Reduction of metal with
NaBH, (10 eq.),
disappearance at ~240 nm,
intense feature at ~200 nm
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Mild Sintering Step:
Low pH Removal of Dendrimer

G3-Pdg gRhg 4 L mesoporous aggregat

1.3 M HCI
1:1 H,O/EtOH

* pH < 2 destabilizes colloidal suspension

* Protonated interior and terminal amines have
no interaction with nanoparticles

* 85-90% of dendrimer removed by washing (6-
7 wt % remains, by TGA)

* Powder XRD consistent with 4-5 nm
crystallites, no pure Rh phases
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Electron Microscopy

* Low Magnification:
*Porous/sponge-like
*Very large particles

 High Magnification:
* hard sintering gives rise to
5-10 nm ligaments
* broad pore size distribution
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Compositionally Uniform

Sintered Material

* All EDS spectra show composition
within 1% of nominal

« XPS - large area sampled, within
1% of nominal

 Key aspect for reliable, predictable
H-storage properties

* Prediction: thermally stable pore
structure throughout

20 25
Energy/keV

Site 1 90.4 9.6

Site 2 91.0 9.0

XPS 89.8 10.2
Nominal 90.9 9.1
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Nitrogen Porosimetry

3507 ; « Bulk measurement provides generally good
A 300- /lff agreement with microscopy
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In situ heating

*Pore structure intact to 400°C

*No low temperature collapse
indicative of pure Pd

*Both alloying metal and larger
average pore size contribute to
more stable pores

*Suggest removal of residual
organic material (200-250°C) is
possible without collapse of pores

()
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H, Storage Properties
G3-Pd, gRhy 4

1000 -

- *Nanoporous material has somewhat lower

H, capacity than bulk (~1 micron PS)
——Bulk Pd_Rh,_.

—— Nanoporous Pd_  Rh .

*Sloping P, similar <10 nm Pd NP

*Low P storage is higher than bulk
(crossover ~ 0.5 mol H/mol M)

P (mmHg)

*Considerably less hysteresis - pore
volume facilitates volume change

+Significant surface adsorption of H, in
aa st , porous material, not in bulk
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Nanostructured Material:
Rh at pore surfaces

Motivation:

*Surface Rh may impart thermal stability
Effect on thermodynamics of H, storage (more Pd-like PCT)
Kinetics of hydriding affected by surface, subsurface alloy

0.0 ——— H2 gas
Ta
Vv
W
= Mo Stability of surface
> 02 Rd © hydride should affect
2 Pd bulk barrier to hydrogen
o Ru absorption
-g -0.4 Ir b
£
I
-0.6{ ———— Pd surface 1

Greeley, J. and Mavrikakis, M.,
J Phys Chem B 2005, p. 3460
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Strategy for Synthesis
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Elemental Analysis
GB'PdO.Q(Rh)O.1

Site 1 95 5
Site 2 93 7
Site 3 93 7
Site 4 98 2
SEM 90 10
XPS 91 9
Nominal 91 9

+ Close to nominal composition at large
scale (SEM, XPS)

« Somewhat inhomogeneous at small scale

+ Consistent with some segregation of Rh
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Characterization of

12+ —=—G3-Pd_ ,Rh, , (alloy)
- -t —=—G3-Pd__(Rh_) (core/shell)
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*83 m?/g surface area

*Morphology very similar to alloy
*Pore Size Distribution similar to alloy
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G3-Pd, ¢(Rh), 4 H, storage properties
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Summary and Outlook

Highlights:

* New, unsupported, high surface area Pd alloys
prepared for Hydrogen isotope storage

« Compositional uniformity leads to uniformly stable
pore structure (~400°C)

* H, storage thermodynamics similar to previous
reports for nanocrystalline/nanoporous Pd alloys

* Much faster kinetics of H-loading compared to
bulk alloy

 Core/shell precursor leads to flatter, more Pd-like
H, storage

—=—Bulk Pd, Rh_
—+— Nanoporous Pd  Rh_

P (mmHg)
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Summary and Outlook

Future Work:

» Spectral imaging of alloy and core/shell material

* More detailed kinetics (isotope exchange)

* Helium implantation, evolution

» Hierarchical Pores

Sandia
National
Laboratories



Acknowledgments

David Robinson

Michelle Hekmaty

Benjamin Jacobs, Protochips, Inc.
Vitalie Stavila

Nancy Yang

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia

7 Y A\ J =% Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Sa".dla
”Z‘-’mmvmbmmnmmm-;mg Department of Energy’s National Nuclear Security Administration under contract DE-AC04- National \
94AL85000. Laboratories



