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Combustion (and atmospheric chemistry) are

Fuels Research Lab (C.J. Mueller, Sandia)
* A dense web of coupled reaction sequences

* Predictive chemical models rely on
— Rate determinations of elementary reaction steps
— Product branching ratios (isomer-resolved)
— An accurate potential energy surface
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e Courtesy of Habib Najm, Sandia National Laboratories
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Exploring chemical reactions
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Isomer distributions are a sensitive
probe of reaction mechanisms

* Isomers often show different reactivity, steering downstream
chemistry in new directions.

C;H; + O, = products

isomerization 1somerlzat10n \
H
H H “ H 7/ <|_|
H H
cyclopropyl methylvmyl
| +0, fast slow 10, fast

reaction reaction reaction
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Distinguishing Isomers

Infrared spectroscopy: selective, but not sensitive
Microwave spectroscopy: ultra-selective, but...

Each isomer of a chemical usually has a distinct ionization energy,
and a characteristic shape of its photoionization curve (Franck-Condon).
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Valence compared to core ionization
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orbital energies,
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Quantitative branching ratios from
photoionization spectra
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Photoionization Source

The Advanced Light Source
Lawrence Berkeley National Laboratory

« Chemical Dynamics Beamline
« VUV tunability 7.3 - 15 eV
« Resolution 10-50 meV
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How do we study reactions with isomeric selectivity?

* Multiplexed photoionization mass spectrometry
(MPIMS)

— Universal detection (mass spectrometry)
— Simultaneous detection (multiplexed mass spectrometry)
— Isomer-resolved detection (tunable VUV, ALS synchrotron)

— High sensitivity (synchrotron radiation + single ion counting)
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Multiplexed Photoionization Mass Spectrometer

Pressure: 1 —10 torr

Temperature: 300 — 1000
Temporal Resolution: ~40
Mass Resolution: ~ 1600
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Three-Dimensional Data: S(m, ¢, hv)

193 nm
C3H3C1 > C3H3 + (1 [C;H;] ~ 4 x 102 molec/cm?
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Three-Dimensional Data: S(m, ¢, hv)
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The 2™ aromatic ring in PAH formation

*C;H; + C;H; 2 CiHg is an important reaction forming the first benzene ring
*Resonance stabilization is key

*C;H; + C4H; may be significant in formation of the 2"® aromatic ring

H

o H
¢—c=c-H A
/ C—C\

0 + < O/C—H —> CyH;
c=c=C-H £
/ H H
H
Figure 1. Molecular structure of corranulene, a possible fullerene
” y e precursor.
a” (out of plane) a’ (in plane)

Kislov and Mebel, J. Phys. Chem. A 111, 3922 (2007).
unpaired electrons
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C;H; + C.H; 2 C,Hy

C;H3Br / CgHsBr + 248 nm, T = 300K, P = 4 torr
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CoHg Reterence Photoionization Spectra

— indene

— 3-phenyl-1,2-propadiene
—— 1-phenyl-1-propyne
— 3-phenyl-1-propyne
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Propargyl + Phenyl (300K)
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Propargyl + Phenyl (600K)

H H

Residuals

O Expt 600 K
— Fit

Basis Functions Populations with 2 ¢ _error
3-phenyl-1,2-propadiene 21.9 6.6
1-phenyl-1-propyne 6.1

3-phenyl-1-propyne 55.4
indene 16.5
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Propargyl + Phenyl (1000K)
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— Fit

Basis Functions
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Preliminary Isomer Ratios

@ 3-phenyl-1-2-propadiene
= 1-phenyl-1-propyne

= 3-phenyl-1-propyne

@ indene

error bars are 2¢
H Phenylallene

\ P\
C—C—Cw

©

0 TR

600 800
Temperature

H 3-phenylpropyne
\
H—C—C=C-H

(o))
o

H

N
o

c
0
—
L
=
o
o
o
e
=
O
O
L=
[
o

N
o

Open Questions:
Is it easier for the propyne-like adduct to isomerize?
Cross sections are estimated. How much error does this introduce?
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C;H; head addition to phenyl
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3-phenyl propyne Reaction Coordinate indene

hode,  H atom-assisted isomerization: V. V. Kislov and A. M. Mebel, J. Phys. Chem. A 111, 3922 (2007).
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C;H; tail addition to phenyl
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phenylallene Reaction Coordinate indene

hode,  H atom-assisted isomerization: V. V. Kislov and A. M. Mebel, J. Phys. Chem. A 111, 3922 (2007).
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Propargyl + Phenyl: Summary

* At low temperatures, simple adduct formation
» At higher temperatures, isomerization to more stable species

* Next steps:
— Pressure dependence of the reaction
— Variational treatment of entrance channels (A. Jasper)

— Multi-well master equation calculations (A. Jasper, J. Zador, J. A.
Miller)
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Conclusions

© CgH;+ CgH;
— Simple adduct formation at T < 600 K
— Isomerizations from 800 — 1000 K - indene, a two-ring aromatic.

» Direct observation of Criegee intermediates should open a
new chapter in their study
— Reaction rates
— Products
— Other forms of spectroscopy

« Multiplexed Photoionization Mass Spectrometry can identify
unexpected intermediates in a complex web of chemistry

Sandia
National
Laboratories




Sandia
National
Laboratories

Trevitt

il
e -
. - _"

David Craig
Osborn .
Talitha Taatjes

Giovanni
Selby Meloni

This work is supported by the Division of Chemical Sciences, Geosciences, and

a y Biosciences, the Office of Basic Energy Sciences, the U.S. Department of Energy.
Carl Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed
. Martin Company, for the National Nuclear Security Administration under Contract
Johnsen Percival DE-AC04-94-AL85000.
Sk Shallcross
National



Sandia
National
Laboratories

Challenges of High Pressure

Future engine designs will critically depend on our
understanding of chemistry at:

— Pressure: 50 — 150 atmospheres

— Temperatures: 600 — 1100 K
Extrapolations to these regimes require solid science
Pseudo-first order conditions

— C,H; + O, > CH,O + HCO (in great excess of helium)

— Rate = -d/dt [C,H5] = kK[C,H,][O,]
0.01 atm - 100 atm increased dilution by104.
Best solution is increase of VUV photon flux by 104.




Our Needs / Wants in a Light Source

* Needs
— Repetition Rate 50 kHz or greater
— High average power (> 10'3 photons / s at 0.1% bandwidth)
— Continuous, rapid tunability (7.3 — 16 eV)
— Light with no harmonics (at least 1 part in 10%)
— High brightness (spot size ~1 x 1 mm)

 Wants
— Much higher average power (10"7 photons / s at 0.1% bandwidth)
— Tunability from 6.0 — 16 eV
— Only moderate peak power (to avoid multiphoton processes)

Sandia
National
Laboratories




Photoionization Energy Dependence

Indene ionization as a function of temperature

— 930K
— 800 K
— 600K
— 298K
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Photoionization Energy Dependence

3-phenyl-1-propyne PIEs as a function of temperature
— 298 K 3p1p

— 600 K 3p1p

— 800 K 3p1p

— 930 K 3p1p

- == 930 K 3p1p (slow flow)
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Following Reaction Sequences:
Propargyl + Acetylene

C;H; + C,H, 2 C,H; (linear or cyclic?)
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C.H, + C,H, at 800 K
CgH; + C,H, — CsHs + C,H, — C/H;

T=800x5K
P = 7.4 torr Linear C;H; Isomer(s)

— mass 39 —— propargyl PIE ¢—Cc=C-H

C;H,4 — mass 65 —5— img_013_EX_m65 /
—— mass 91 —— cyclopentadienyl PIE
—— mass 116 ~< img_013_EX_m91
— mass 116 —— benzyl integrated PE spect
~&— img_013_EX_m116 |
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C,H, + C,H, at 990 K

C3H3 + C2H2 — C5H5 + C2H2 — C7H7 + C2H2 — C9H8 + H

T=990+16 K
P = 8.5 torr

linear C,H, isomer(s)
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C.H. + C,H, at 990 K

T=920£40K
P = 8.0 torr
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C;H; Potential Energy Surface

Head
addition

— Ere]
2 (kcal/mol)

C3H3 + Csz
76.75

addition

Moskaleva & Lin, J. Comp. Chem. 21, 415 (2000)
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C;H; + C,H, Reaction Pathways

H /H
H <o clopentadienyl
¢—c=Cc-H + H-C=C-H =3 y- L C=C-H cy P y
o H H M
lonization Energy ~ 10.0 eV c=¢C
~8.8eV / \
H Hse—e / |
>c=c=é—H 4+ H-C=C-H =) H\é‘; C=\C—H H
H H lonization Energy = 8.42 eV
LouH O\ H WA benzyl
e —_ >C_(|:/C=q = -
_C C~
H/C@/ “H H \?/ H }c-c{ H
a : 0
\H M " indene
H H c= H
e ced< Yo Ne-H
— H /7 \\ /7 7\
c—C H /C—C H (= H
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Conclusions

« Multiplexed Photoionization Mass Spectrometry is a powerful
tool to unravel pathway-specific chemical mechanisms.

» Single reactions and reaction sequences can be studied in
unprecedented detail.

* CgHs + C3H; shows substantial onset of isomerization
between 300 — 1000 K, forming 2-ring compounds.

« C3H; + C,H, reaction demonstrates a molecular weight
growth sequence with acyclic and aromatic intermediates.

We have sensitive and selective probes of potentially important
molecular weight growth reactions. Determining the relevance of
any particular sequence requires comparisons with combustion models.
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Propargyl + Phenyl (800K)

H H

N=O-=N

Residuals

O Expt. 800 K
—— Fit

1.\
o

Basis Functions
3-phenyl-1,2-propadiene 16.9

1-phenyl-1-propyne 11.8
3-phenyl-1-propyne
indene
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C;H; tail addition to phenyl

Reaction Coordinate

phenylallene

hode,  H atom-assisted isomerization: V. V. Kislov and A. M. Mebel, J. Phys. Chem. A 111, 3922 (2007).
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Comparison of precursor radical time profiles with and without acetylene
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Mass Spectrometer Upgrade

* Present sector mass spectrometer
— (+) 100% duty cycle
— (-) low mass resolution (m/Am ~ 150)
— (-) cannot detect H or D
— (-) calibration changes with time

* Time-of-flight

<_ (-) < 100% duty cycle (usually much less) >
-) mismatch of photons (quasi-cw) with mass spec (pulsed)
+) much improved resolution (m/Am > 1000)

= (
—
— (+) mass range unlimited (can see H and D)
— (+) mass calibration should be more robust
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Why are the Blue Mountains Blue?
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Ozone formation in the troposphere

* In urban environments, a primary source of ozone is

¢OH + RH > Re + H,0

Re + OC.)2 = ROOQOe

ROQOe + NOe - RQOe + NO,e

NO,e + sunlight > ¢O(3P) + NOs
«O(P) + ¢0, (+ Nj) > 05 ('A,) (+ Ny)
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Alkenes in the troposphere

 Significant biogenic and man-
made sources of alkenes

— Plants (trees & shrubs) emit 5 x '
10" kg / year of isoprene \A\

— Additional biogenic production of
monoterpenes / sesquiterpenes

— Alkenes from industrial emissions

— Alkenes ~ 15% of non-methane
hydrocarbons
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Ozonolysis of Alkenes

O O Primary Ozonide

0 A :
Ozone LUMO O/O\O AH.. =-200 / \

b 0= 7

3 C—C
Alkene HOMO Cc—C

H 0 O\H
More chemistry

Secondary
Organic
Aerosols
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Atmospheric aerosols °

A \/olcanic

* Primary aerosols

— Injected directly to the atmosphere
Sea spray
Dust

« Secondary aerosols

— Formed in the atmsophere
Physical (condensation via cooling)
Chemical (reactions)

* Aerosols cool the earth
— Direct reflection of sunlight
— Cloud condensation nuclei

 Detrimental to human health

* Give the Blue Mountains their name
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The Criegee intermediate mechanism

* In 1949 Rudolf Criegee proposed the following mechanism

AH,, ~-200
kJ/mol

highly excited;
weak bonds

-

[ R4R,CO0-]F [R,R,C00-*
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Can we observe the Criegee intermediate?

* David Johnson & George Martson, Chemical Society
Reviews, 37, 699 (2008)

“...it is worth noting that chemical species attributed as being
Criegee intermediates have not, to date, been observed
directly in the gas phase, despite their intermediacy in ozone-
alkene reactions first being postulated by Criegee in 1949.”
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Criegee intermediates from DMSO oxidation

Dimethyl Sulfoxide (DMSO) oxidation may

form CH,0O0 (Asatryan and Bozzelli, PCCP 10, 1769
(2008))

O O
| |l @

CH,SCH, + Cl > CH,SCH, + HCI

O O oo®
1K

Il /
CH,SCH,+ O, + M - CH,SCH,

O oo°® @)
1l / Il o °
CH,SCH, > CH3S.+ CH,00

/

mlz = 46

Dioxirane is / \
—0

25 kcal/mol

more stable . CH,S

than CH,00 thio-
formaldehyde

dioxirane
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Photoionization spectrum identifies CH,00

t=55-100 ms

* New species has IE ~9.9 eV
— HCOOH (IE = 11.33 eV)
— C,H;OH (IE = 10.48 eV)
— CH4OCHj,(IE = 10.025 eV)

9.4 9.6 9.8
Photon Energy (eV)
t=0-50ms
(OE oy

/e

Photoionization Efficiency

« CH,00 absent after 50 ms

—e— CH,S photoionization spectrum

m/z = 46 signal from DMSO oxidation
—O— Early time - (inset) Late time

10.0
Photon Energy (eV)
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Comparison with Franck-Condon Factors

« CCSD(T)/CBSIE =9.98 eV

* Ab initio photoionization
spectrum agrees in both
shape and position
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120 kJ/mol
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Non-vertical Vertical
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Higher resolution with time of flight mass
spectrometry

 Cumulative evidence for e
eCH,00e
— Correct mass .

— lonization energy agrees
with calculations

— CH3SO0O co-product observed

Kinetic Time (ms)

8CH,00 miz = 46.006

« Can we study reactions of
CH,007?

4585 4590 4595 46.00 46.05 46.10 46.15
miz
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Reactions of Criegee intermediates?

Stabilization (via collisions)

_ ik ()
H/// @ O N2, He a H/// @ O
,"C B 0/0 /"C B O/O
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Unimolecular reactions of Criegee

intermediates?
B @_ * Organic acid
H.C, 0O H.C, Oe O
H;C, @ Q 3=, S, S %
d o N\ > el = e —>He—c
H” O H™ 0 H™ 0. OH
P

H,C—C, ~*+ °OH

OH production (nocturnal)
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Unimolecular reactions of Criegee

intermediates?
B @_ * Organic acid
H3C/ @ O & “
C—0O
H” O
H,C OH H,C .
N/ SN
_Cc—0 —> =0 + eOH
H |-|/
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Volatility and aerosol formation

Increasing oxidation

—_—

Species C,H, H,CO HCOOH

Boiling point 163 K 254 K 374 K

Decreasing volatility

—_—

Increasing aerosol formation
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Bimolecular reactions of Criegee

intermediates?
_ @_ .
H,O
H3C,,/, 0O SO, Rates 7?7

—_—  Products ??

Direct monitoring of Criegee

intermediates opens the door to all
these studies
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Molecular Weight Growth Leads to Soot

Soot is carcinogenic. 50 ms "

Soot formation reduces chemical ._, on it
energy to work convej ) - ,,('
30% Isomeric composition e{‘

is important

Fractal clusters

Black carbon deposi 10-30mm
/ A%
accelerate global wa Y

N +0,> CO, + H,0 \l/

Precursor
molecules

Ll OH co
CyeHsy C;H, heptamethynonane
C3H5

e 1 ms

Izvekov and Violi, 2006
g Aiaraa g i |
mﬂm i i | f R ~am il




2-D laser-induced fluorescence image of a benzene discharge
T.W. Schmidt, S. H. Kable, et al.
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Why are Resonance-Stabilized Radicals Important?

T D,(C-H) in kcal mol!
H\ C H
H-c” I >l
/N 101
H H \ H
propane !
e
H W 33
propyl \ . CI'{
H—\/C/ XC\—H
H H 88
propene i Iﬁ
C
H—/g/ Ne-u < c/ \5\ H
/ H H H
allyl
H, 57
C C=C-
propargyl - H’ wH
H . He S8 allene
/C:C:C<1H > /C—CEC—H
* Resonance-stabilized radicals:
196 — Larger concentrations than other radicals
/BZCZB\H due to high Dy(C-H)
o pliopargylene — Reactions with closed-shell molecules are

National
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Propargyl Radical Addition Pathways

H H, o

\C —C :(.3—H<—> C—C=C—H Propargyl Radical
/ /
H H
Tail Head
Three addition pathways H
/
H—C=C— C\
1) Head-to-Head H\H
\
/C—CEC—H
H
H{ < >
/C:C:C—H Q
2) Tail-to-Tail H \ H
H-C=C=— C\
H

H—C=C—C There is no direct path
H to benzene:

3) Head-to-Tail ,H |somerization Required

. N\
Sand
Naﬂml?al H
laboratories




Reaction pathways and isomers are important
example: propargyl + propargyl

Five - and Six - Member

Entrance Paths Ring Formation

300 K P = II—VIII VI_’“

VIII—IX X—XI

|
/0
TN N
HO H
H

e \H

vin—xn L
ATV fN\Ix  IX—X
/
IX
X XI
H H o H
B e o _n H\\"—/H
O\ Y O
H
H [ "
N ral?
h b
e &
H C C.
= H

Energy (kcal/mole)
Energy (kcal/mole)

Acyclic: easier to oxidize Cyclic aromatics: harder to oxidize

= PAH /S500T PAH / SOOT
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TOF mismatch

Ext Accel Detector

»
>

Potential

Distance
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Orthogonal Extraction Time-of-Flight

a Completion of previous duty cycie b Orthogonal acceleration pulse applied - ion beam sampled

inclined drift region

heaviest ion
detected

1on sqgurce

ion packet spatially focused
in TOF dimension

Coles and Guilhaus, Trends in Analytical Chemistry, 12,203 (1993).
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Sandia OA-TOF

continuous differential- orthogonal

10n optics pumping wall extractor
Nanora
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Experimental Design
MCP DETECTOR

Photolysis

Laser ORTHOGONAL
EXTRACTOR

REACTOR

P=1-10 Torr
T=298—-1000 K

Vacuum
Sandia J
National pump
laboratories



Preliminary OA-TOF spectra

—— Preliminary TOF
—— Magnetic Sector

—— Preliminary TOF
—— Magnetic Sector

lon Intensity
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Allyl + Allyl

» Allyl radicals are resonance stabilized
— But, contain only 1 = bond (compared to 2 = bonds in C;H5)

* Allyl radicals included in some molecular weight growth models

* Is allyl important compared to propargyl?
— Measure rate coefficient
— Measure product isomers

Ig allyl Ig
Ho o NX_H Ho~% N2_H
H7C C<H <> H7C C<H
propargyl
H H. o

Sandia
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Allyl + Allyl: Kinetics & Products

« All previous rate coefficients
depend on UV absorption cross
section of C3Hs.

c k;=14-43x10"

cm3 molecule! s

0

B e s
§hv=9.7-10.1¢eV|

“‘-..n

(o7}
o

Time {ms)
I
()

]
O

*  Precursors:

— 1,5 hexadiene (CzH,()
photodissociation for kinetics |
studies. P =4 Torr, T = 298 K. 60

_  Allyl bromide (C,H.Br) for Moss Gy
product studies. P=1 -6 Torr,

W
T=298 — 600 K. =
oy
o
E
Lo
=
‘@
v
QL
=
Sk 40
Namﬁm Time {ms)
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Kinetics

[e2}
[y

[Allyl] *10"* molecules cm

10 15 20
40 50 60 70 80

12 -3
Time (ms) [Allyl] (10~ molecules cm )

k(298 K) = (2.7 £ 0.7) x 10" cm® molecule™! s (this work)

(2.65+0.2) Tulloch & Pilling, J. Phys Chem. 86, 3812 (1982).
(3.0£0.5) Jenkin & Hayman, J. Chem. Soc. Faraday Trans. 89, 433 (1993).

Sandia
National
Laboratories




CcH,, Isomers: Reference Photoionization Spectra

CgH,o Photoionization Cross Sections

a. Total cross sections
—- 1,3-hexadiene
—o— 2 4-hexadiene

o]
o

40 —o— 1,4-hexadiene
H H ~ 4 2.3-dimethyl-13-butadiene
| | 30 -B- 1,5-hexadiene
C + C
/ \. o /

-
o

w
(&)}

(]
o

)
=3
c
8
8 o
w
7
7]
e
&

—T
e

H
N
c—¢” Sed

N
o

1,5-hexadiene

Photon Energy (eV)
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Products of the Allyl Self Reaction

Intensity

For P=1 -6 Torr
T=298—-600 K
only isomer of C;H, 1s
1,5 hexadiene 9.0

Photon Energ
O mass 67

O mass 82 . .
1 5-hexadiene ) —— daughter ion of 1,5-hexadiene

Intensity
Intensity

O mass 40 O mass 42 C3H6 klb/k1a< 003

—— allene —— propene

Intensity
Intensity
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C.H,, Potential Energy Surface

PR}
L

e

]

e
e

gL L /

=
" _—
ll..llt..llur
——

barriers
5 hexadiene
# N
1,3 hexadiene

&

1

o e R = T
s % e

o
%
(lowy[eay) "y

Reaction Coordinate
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Allyl Self-Reaction: Conclusions

« Allyl radicals are less important than propargyl in the initial
steps of soot formation chemistry
— Lower steady-state concentration (due to weaker C-H bond)
— Less likely to isomerize to cyclic species (higher barriers)
— Larger adduct (CzH,,) is more easily stabilized compared to C;H;

42 30
vibrational vibrational
modes modes
| i
8 O, e N ST n WH
H=C C—H H=C GH S
H H H 0 —_— ~
alljfl allene
c=c=C<H +> :8_CEC_H — TNy
= H propargylene

e propargyl
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Sensitivity

Nioq =1.74x10° >

G*nph *Atbin *C*mi

S = 100 counts timebin! = S/N= 10

o= 10 megabarns (1 x 10-'7 cm? molecule™!)

ny;, =5 x 105 photons s™!

At,;, = 250 us

C = 2400 coadditions (10 minutes @ 4 Hz reprate)
m; = 58 amu (acetone)

Nieg = 7.6 x 10! molecules cm™
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Cyclopentadienyl radical recombination

« ¢-CsH; is a 5-member resonance-stabilized radical
 Melius and coworkers have calculated the self reaction as a

route to napthalene (C,,H;g).

» Kislov and Mebel calculate pathways to other C,,Hg isomers,

such as fulvalene. ‘ |

 What isomerizations occur as 2 H atoms are lost?
* Will this reaction lead to flat or curved PAHSs?

Sandia
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Pathways to Allyl & Propargyl

CzHg
(propene)

CzH,4
(allene)

+F/-F 5,
+OH/-H 5O

-
“ N,

*

R '.

'(propargyl).

‘$
. -
+ /- F 5, Secondary
+OH/-FH O CoH, Flame
CoH,Flame

3C:3|—|2 CzHgFlame
(propargylene)

C.J. Pope & J. A. Miller, Proc. Comb. Inst. 28, 1519 (2000).
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Single vs. Multiple Collisions

Single Collision Expts. (crossed beams) Multi Collision Expts. (reaction cells)
*  Quantum numbers reflect *  Quantum numbers reflect energy
reaction dynamics transfer

«  Maximum detail - Thermal average over collision
energy blurs some details

- Stabilization not possible . Collisional stabilization possible

. Colligions with bath gas may - Generally more realistic reaction
drastically alter reaction conditions

Molecular Rearrangements of CHCCH,CH,CCH
and CH,CCHCHCCH,

..
=
= -
= s
= E
(] oy
= ¢
- =~
2l g
z :
=
&

{0.0)

Reaction coordinate

Strazisar, Lin, Davis, Science 290, 958 (2000)

ig. 11. Reaction coordinate diagram for head-to-head and tail-to-tail recombination of propargyl (C;Hs) radicals (Miller and Melius [77]).

e J. A. Miller, Combust Flame 1992;91:21-39.
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Combustion Research Facility

An Office of Science Collaborative Research
Facility
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Current job openings

http://sandia.gov/careers/search-openings.html

Gas Phase Energy Transfer / , @
High Pressure Chemistry et (SN 25 s

Quartz probe —

Job 63305 (PostDoc)

™ Molecular beam

-8=0° ©=180"-

Low-Pressure Flame
Chemistry
2 PostDocs

Combustion Chemistry Theory
and Modeling
. 1-4 PostDocs
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Molecular Weight Growth Controversy

Which reactions are most important in forming aromatic rings?

lower concentrations, but
no entrance barriersC——=> Radical + Radical (for example, C;H; + C;H.)

higher concentrations, but
entrance barriers [——> Radical + Closed Shell (for example, C;H; + C,H,)

Sandia
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Following reaction sequences with MPIMS

* Most real world chemistry (combustion, atmospheric, etc.)
consists of sequences of reactions

A+B > C1+C2
C1&C2+B->D
D+B>E+F

*  We can kinetically verify that reaction steps are linked

* We can start the reaction at intermediate points with a single
Isomer

C2+B->D
D+B>E+F

Sandia
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Laser Photolysis Reactor 1s Coupled to
Time-Resolved Mass Spectrometer

Excimer laser

m
photolysis ‘ Am
50 kHz

repetition
rate

Quartz
reactor

P=1-10 torr
T=300-1000 K

}_|

Tcm
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Reactor, pinhole, and skimmer
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