
Monarch: A High-Assurance Java-to-java (J2j) Source-code Migrator∗

Victor L. Winter, Jonathan Guerrero, Carl Reinke
University of Nebraska at Omaha

Department of Computer Science

{vwinter, creinke, jguerrero}@mail.unomaha.edu

James T. Perry
Sandia National Laboratories

Surety Electronics & Software

Department 2144

jtperr@sandia.gov

Abstract

JVM-based processors used in embedded systems are of-
ten scaled back versions of the standard JVM which do not
support the full set of Java bytecodes and native methods
assumed by a JVM. As a result, code bases such as Java li-
braries must be migrated in order make them suitable for ex-
ecution on the embedded JVM-based processor. This paper
describes Monarch, a high-assurance Java-to-java (J2j)
source code migrator that we are developing to assist such
code migrations.

1 Introduction

At Sandia National Laboratories, a hardware implemen-
tation of the JVM [1] is being designed for use in resource-
constrained embedded applications. This implementation
has capabilities similar to the Java Card. Sandia Engineers
have determined that the creation of applications for their
platform would be significantly facilitated if a suitable sub-
set of the libraries in the Java Standard Edition (SE) API
could be made available to their embedded systems devel-
opers. This has given rise to a funded project whose goal is
to develop the capability of migrating Java code (e.g., select
Java libraries) to Java-based platforms in a highly reliable
manner1.

1.1 Contribution

This paper describes a novel approach and infrastructure
for Java-to-java (J2j) source code migration, an area in the

∗This work was in part supported by the United States Department of
Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram
laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy.

1It should be noted, that the computational restrictions being consid-
ered are fairly representative of resource-constrained JVM’s in general.
Thus, the Java-to-java migration capability being developed can be used to
target a variety of resource-constrained JVM’s.

field of migration in which little to no work has been done.
Related work has typically centered around J2X or X2J mi-
grations where X is some language other than Java (e.g.,
C/C++ or .NET) [2][3][4]. Assumptions upon which our
J2j migration is predicated imply that deletion of code plays
a central role in J2j migration. Deletion requires analysis
that is fundamentally different from translation-based anal-
ysis. In particular, we are not aware of any tool capable
of performing the kind of dependency analysis necessary to
safely justify deletion.

Our J2j migrator integrates transformation-based pro-
gramming and function-based programming within a
framework called the TL System. Complimenting this is
Bascinet, a GUI developed in Java, providing system-level
support for both developing our migrator and for then mi-
grating Java libraries (e.g., Java code bases residing within
folder hierarchies). Comprehension of source code is sup-
ported by several tools and artifacts including a special-
purpose plugin written for Cytoscape. The resulting J2j
source-to-source migration tool is called Monarch.

The remainder of the paper is as follows: Section 2 sum-
marizes the restrictions of the family of processors we are
targeting. Section 3 describes J2j migration and its goals.
Section 4 gives an overview of Monarch. Section 5 de-
scribes the infrastructure upon which Monarch is built.
And Section 6 concludes.

2 Software Development for Restricted
JVM-based Platforms

From the perspective of process, developing code for the
processor we are targeting is essentially identical to devel-
oping code for the JVM. Programmers can develop and de-
bug programs on a desktop using an IDE such as Eclipse or
Netbeans. Tools such as unit testers can be used to validate
aspects of the software.

From the perspective of the Java language, software de-
veloped for a restricted processor may only contain features

SAND2011-6360C



Java Language Restrictions
Feature Relevant Status

Keywords
floating point strictfp, float, unsupported

double unsupported

threading synchronized unsupported
volatile unsupported

serialization transient unsupported
assertions assert unsupported
multi-dimensional arrays unsupported

VM Restrictions
Feature Relevant Status

Keywords
native methods native limited support
garbage collection limited support
reflection unsupported
(dynamic) class loading unsupported

Table 1. A typical list of Java features not sup-
ported by restricted platforms.

supported by the processor. A typical list of features that
are not supported by restricted processors is shown in Table
1. It should be noted that the use of native methods within
a restricted processor is also limited. These feature restric-
tions and native method limitations extend to the entire code
base of an embedded application, including any elements
imported from standard Java libraries (e.g., java.lang).
For example, the Reflection API is generally not available
to the developer in part due to its native method dependen-
cies. A somewhat different restriction applies to the method
finalize(), used in the context of garbage collection,
which is available to the Java programmer on a standard
JVM. In particular, standard garbage collection is often-
times not available within an embedded system.

3 An Overview of the J2j Migration Problem

Informally stated, the goal of J2j migration is to trans-
form, at the source-code level, a code base such as a class
library into a semantically equivalent form that has the ad-
ditional property that it is also executable on a targeted plat-
form. Ideally, the migrated and un-migrated versions of a
code base would be indistinguishable to the user of the code
base. Unfortunately, indistinguishability is a “tall order”
and is generally not achievable in practice due to a variety
of constraints (e.g., time and space) placed on embedded
processors. As a result, concessions must be made. In par-

ticular, users must decide in which cases to accept reduced
functionality (e.g., fewer methods) and when to accept al-
tered functionality. Furthermore, these decisions must be
made in the context of a larger system design where the
properties of a migrated code base must be transparent to
the design and development team.

There are two types of mechanisms that must be con-
sidered in the context of J2j migration: removal and re-
implementation. Removal(-based migration) entails strict
deletion of code that is not supported by the targeted plat-
form. In contrast, re-implementation(-based migration)
adapts code by replacing unsupported code fragments with
equivalent (or near-equivalent) code fragments expressed in
terms of computations supported by the targeted platform.
It should be noted that in a practical setting, a straightfor-
ward re-implementation is not always possible.

3.1 Goals

Our J2j migration project has the following goals:

• Correctness. To produce migrated code that is correct
with respect to the original code.

• IV&V. The code should be migrated in such a manner
that migration can easily be subjected to independent
verification and validation (IV&V).

• Human Involvement. Migration should be automated
to the extent possible. However, the overall migration
process should allow for human involvement such as
the manual re-implementation of critical portions of a
code base.

• Repeatability. The complete migration, including the
substitution of manually developed code, should be re-
playable in a fully automatic manner.

• Reuse. Migration of a code-base (such as a Java li-
brary) may need to be repeated as new versions of the
code-base are released. In this case, there should be
support for reusing the re-implementations developed
for the previous migration.

4 TheMonarch Migrator

Previously, we had developed a lightweight code mi-
gration tool implemented within a transformation system
called HATS [5]. We considered our tool lightweight be-
cause dependency analysis it performed was not semantics-
based. Instead, a simple syntactic matching algorithm was
used to approximate dependency analysis. Interestingly
enough, this approach yielded fairly good results [6]. Using
this migrator we were able to automate a significant portion



of what could be automated during the migration process.
For example, our lightweight migrator achieved approxi-
mately a 91% coverage when applied to the java.util
library. From an economic standpoint this could be consid-
ered a success.

This new migration tool is calledMonarch2. Two ma-
jor differences between the current and previous approach
is that in the current approach we (1) no longer approxi-
mate dependency analysis, and (2) our transformation tool
has been completely redesigned - in particular, a variety of
higher-level as well as bookkeeping functions are now avail-
able though a single button click.

As shown in Figure 3, Monarch migration consists
of two primary phases: replacement and removal. The
replacement phase is manual and focuses on the re-
implementation of code that in its original form has a de-
pendency on an unsupported feature. In contrast, the re-
moval phase is fully automatic and removes Java elements
having dependencies on unsupported features. We define a
Java element as a (1) field, (2) method, (3) constructor, or
(4) initialization block.

4.1 Tool Capabilities

In addition to performing dependency-based removal,
Monarch provides a framework in which it is relatively
straightforward to gather a variety of metrics over large
code bases (e.g., 250K LOC). Examples of metrics cur-
rently gathered include:

• The total source lines of code.

• The total number of classes, fields, methods, and con-
structors.

• The total number of initialization blocks and their lo-
cation within the source code.

• The total number of occurrences of the new keyword
within a constructor.

• The total number of single-type imports.

• The total number of static single-type imports.

• The total number of anonymous classes.

• The total number of class declarations oc-
curring within a method or constructor. For
example, the subset of the Java Standard
Edition (SE) base libraries comprised of {
java.io, java.lang,java.math, java.nio,
java.util } contains 257,163 lines of code, has no

2Butterflies are the archetype of transformation. Monarch butterflies
are known for their migratory prowess, traveling roughly 2500 miles dur-
ing their migration.

class declarations within a constructor, and contains
only one class declaration within a method.

Metrics such as these have yielded empirical evidence
that certain kinds of dependency “corner cases” are ex-
tremely rare.
Monarch also employs graphical representations of

software. In particular, we are employing Cytoscape to help
visualize element dependencies and subtype relationships
within the code. We have developed a Java plugin for Cy-
toscape supporting a number of views on a targeted code
base, including:

• Standard View: This view shows all the types in the
code base, their members, and various dependencies
among these entities. Color coding is used to visually
distinguish both unsupported entities (e.g., the prim-
itive type double) and external entities (i.e., enti-
ties lying outside of the (targeted) code base). Color
coding is also used to identify unsupported dependen-
cies (dependencies on unsupported entities) as well as
external dependencies (dependencies on external enti-
ties).

• Inheritance View: This view shows the inheritance
structure (i.e., both extends and implements) of
all types in the code base. Shapes are used to distin-
guish class, interface, and enumerated types.

• Structure View: This view shows class and package
membership. Data dependencies are not shown, but
color coding is used to identify members having de-
pendencies on unsupported entities.

• Package Membership View: This view shows class-
in-package membership dependencies as well as class-
imports-from-package dependencies.

Figures 1 - 2 shows each of the four views described for
a targeted code base centering on java.math.

5 Infrastructure

Monarch is implemented within the TL System and
Bascinet.

5.1 The TL System

TL is a special-purpose language we have developed for
expressing transformation-based computation. TL is tightly
integrated with the functional language SML. This provides
a context for expressing computation in a hybrid fashion
spanning transformation-based programming and function-
based programming. It is in this programming landscape
thatMonarch is being developed.



Figure 1. Standard and Structural Views

Figure 2. Inheritance and Package Membership Views

Monarch

Replacement

Removal

Original Code

Migrated 
Code

Impact Analysis

Focal Point 
Identification

Manual 
Evaluation

Code Analysis 
and Redesign

Transformation

Affected 
Classes

Re-implementation 
Candidates

Selected 
Classes

Transformation 
Rules

Figure 3.Monarch



The TL System includes a (1) GLR parser for translat-
ing plain text (e.g., ascii representations of programs) into
terms, (2) a TL interpreter implemented in SML for rewrit-
ing terms, and (3) a powerful pretty-printer that can be used
to translate terms into a variety of representations such as
plain text documents and HTML documents.

The terms that TL transforms are parse trees. These
terms contain hidden information describing their point of
origin. This information includes the name of the file and
the row and column number in the file. Point-of-origin in-
formation can be extremely useful for tracing information
within a transformation. In the context of code migration,
point-of-origin information can be queried to determine the
source code location of fields, methods, and constructors
having unsupported dependencies. Point-of-origin informa-
tion can also be used to calculate the number of lines in a
(plain text) file.

The TL System can be executed from the command line
and runs on both the Windows and Unix operating systems.

5.2 Bascinet

Bascinet is a GUI, inspired by the HATS GUI (its prede-
cessor), that is written in Java and provides support for the
development and execution of TL applications. Conceptu-
ally speaking, “Bascinet is to TL” as “Eclipse is to Java”.

Bascinet and the TL System are integrated in a manner
that seamlessly supports the application of transformations
(i.e., TL programs) to file hierarchies. A developer simply
selects the transformation they want to apply together with
the file or file hierarchy to which the selected transformation
should be applied.

Bascinet supports two distinct application modes: (1) a
discrete mode application in which the selected transfor-
mation is applied in a repetitive manner to each file in a file
hierarchy, and (2) a continuous mode application in which
the selected transformation is applied a single time to the
entire contents of a file hierarchy.

Continuous mode application is very useful when the en-
tity to be transformed has been distributed across a num-
ber of files. For example, using this application mode it is
straightforward to develop transformations for gathering a
wide variety of metrics over a Java code base.

Bascinet allows the developer to control to which file
extensions (e.g., dot-java) a transformation should be ap-
plied. From a practical standpoint, this is an important fea-
ture when applying a transformation to a folder hierarchy
consisting of hundreds of folders and thousands of files.
For example, Java libraries occasionally contain files hav-
ing extensions other than the dot-java extension. Applying
a Java-oriented transformation to a non-Java file will result
in failure. The ability to exercise extension-based control
over transformation application permits transformations to

be applied directly to Eclipse workspaces. For example, mi-
grator test suites can be developed in Eclipse and then val-
idated inMonarch without any modification to the folders
generated by Eclipse.

6 Summary and Conclusion

When developing applications for restricted JVMs it is
beneficial to leverage the functionality provided by standard
Java libraries. In order to make this possible, a Java-to-
java (J2j) migration is required. Resource constraints on
embedded processors can prohibit exotic migrations such as
datatype emulation. Thus, J2j migration includes removal
as well as re-implementation of code. The analysis needed
to determine what must be removed is automatable and is
highly complex.
Monarch is a J2j migrator being developed within the

TL system in which: (1) re-implementation is assisted by
visual code representations such as the views we have de-
veloped within Cytoscape, and (2) the removal phase of mi-
gration is fully automated and is based on a complete de-
pendency analysis. Re-implementations are encapsulated
as transformations and the resulting migrations can then be
replayed and readily subjected to IV&V.

References

[1] T. Lindholm and F. Yellin, editors. The Java Virtual
Machine (Second Edition). Addison-Wesley, 1999.

[2] J. Martin. Ephedra - A C to Java Migration Environ-
ment: Approaches, case studies and tools for migrating
legacy systems from C and C++ to Java. Lambert Aca-
demic Publishing, 2011.

[3] J. Martin and H. A. Müller. Strategies for Migration
from C to Java. In Proceedings of the 5th European
Conference for Software Maintenance and Reengineer-
ing, Lisbon, Portugal, 2001.

[4] I. Tilevich. Translating C++ to Java. First German Java
Developers’ Conference Journal, 1997.

[5] V. Winter and J. Beranek. Program Transformation Us-
ing HATS 1.84. In R. Lämmel, J. Saraiva, and J. Visser,
editors, Generative and Transformational Techniques
in Software Engineering (GTTSE), volume 4143 of
LNCS, pages 378–396, 2006.

[6] V. L. Winter, A. Mametjanov, S. E. Morrison, J. A. Mc-
Coy, and G. L. Wickstrom. Transformation-based Li-
brary Adaptation for Embedded Systems. In Proceed-
ings of the 10th IEEE International Symposium on High
Assurance Systems Engineering (HASE). IEEE, 2007.


