SAND2011- 7378C

Checkpoint Compression for Extreme Scale Fault Tolerance

Dewan Ibtesham, Dorian Arnold, and Patrick G. Bridges

Department Of Computer Science
The University of New Mexico
Albuquerque, NM 87131
{dewan,darnold, bridges} @cs.unm.edu

Abstract—The increasing size and complexity of high
performance computing (HPC) systems have lead to major
concerns over fault frequencies and the mechanisms nec-
essary to tolerate these faults. Previous studies have shown
that state-of-the-field checkpoint/restart mechanisms will
not scale sufficiently for future generation systems. There-
fore, optimizations that reduce checkpoint overheads are
necessary to keep checkpoint/restart mechanisms effec-
tive. In this work, we demonstrate that checkpoint data
compression is a feasible mechanism for reducing check-
point commit latency and storage overheads. Leveraging
a simple model for checkpoint compression viability, we
show: (1) checkpoint data compression is feasible for many
types of scientific applications expected to run on extreme
scale systems; (2) checkpoint compression viability scales
with checkpoint size; (3) user-level versus system-level
checkpoints bears little impact on checkpoint compression
viability; and (4) checkpoint compression viability scales
with application process count. Lastly, we describe the
impact checkpoint compression might have on projected
extreme scale systems.

Keywords-Fault tolerance; Checkpoint Compression;

I. INTRODUCTION

Over the past few decades, high-performance com-
puting (HPC) systems have increased dramatically in
size, and this trend is expected to continue. On the
most recent Top 500 list [1], 223 (or 44.6.%) of the
500 entries have greater than 8,192 cores, compared
to 15 (or 3.0%) just 5 years ago. Also from this most
recent listing, four of the systems are larger than 200K
cores; an additional six are larger than 128K cores, and
another six are larger than 64K cores. The Lawrence
Livermore National Laboratory is scheduled to receive
its 1.6 million core system, Sequoia [2], this year.
Furthermore, future extreme systems are projected to
have on the order of tens to hundreds of millions of
cores by 2020 [3].

With this increased scale, future high-end systems are
also expected to increase in complexity; for example,
heterogeneous systems like CPU/GPU-based systems
are expected to become much more prominent. In-
creased complexity generally suggests that individual

Kurt B. Ferreira and Ron Brightwell
Scalable System Software Department
Sandia National Laboratories
Albuquerque, NM 87185-1319
{kbferre, rbbrigh} @sandia.gov

components likely will be more failure prone. Increased
system sizes also will contribute to extremely low
mean times between failures (MTBF), since MTBF is
inversely proportional to system size. Recent studies
indeed conclude that system failure rates depend mostly
on system size, particularly, the number of processor
chips in the system. These studies project that system
MTBEF for the biggest systems on the Top 500 lists will
fall below 10 minutes in the next few years [4], [5]

Checkpoint/restart is perhaps the most common ap-
plication fault-tolerance mechanism in the HPC domain.
Yet, as we describe in Section II, increased checkpoint
overheads coupled with more frequent failure occur-
rences threaten to make checkpoint/restart infeasible for
future extreme scale systems. In this work, we focus
on reducing checkpoint data volumes, particularly via
checkpoint compression. The goal of this research is
to gain an understanding of the role data compression
should have with regard to checkpoint/restart fault-
tolerance mechanisms.

Using several mini-applications or mini apps from
the Mantevo Project [6], a real scientific application,
LAMMPS [7], the Berkeley Lab Checkpoint/Restart
(BLCR) framework [8] and a myriad of compression
utilities, we explore the feasibility of state-of-the-field
compression techniques for efficiently reducing check-
point sizes. We use a simple checkpoint compression
viability model to determine when checkpoint compres-
sion is a sensible choice, that is, when the benefits of
data reduction outweigh the drawbacks of compression
latency. In a preliminary study, we began to investi-
gate the feasibility of data compression for reducing
checkpoint commit latencies [9]. The results from this
study (presented in Section IV) demonstrated that com-
pression indeed should be considered as a part of the
checkpoint/restart solution. In this work, we extend our
previous study to address various shortcomings. In total,
this paper presents:

o A study of the effectiveness of checkpoint data

compression (including the results from our pre-

liminary study);

o A study of the impact of application scale (in
memory footprint, time and process counts) on
checkpoint data compression;

o A study of the impact of application-level versus
system-level checkpoints on checkpoint data com-
pression; and

o A discussion of the position of checkpoint data
compression given current high performance pro-
cessor and I/O technologies and trends.

Why is checkpoint data compression not considered
more often?: This study sheds some new light on the
huge impact checkpoint data compression can have on
fault-tolerance for the types of scientific applications
expected to run at large scales on future extreme scale
systems. Particularly since data processing continues to
become significantly cheaper than data movement, it is
our hope that these results can help to make checkpoint
data compression a more commonly used solution.

In the next section, we give a background of the
checkpoint/restart mechanism and a survey of state-of-
the-art checkpoint/restart enhancements. In Section III,
we present our checkpoint compression viability model
and the related checkpoint compression work. In Sec-
tion IV, we describe the applications, compression al-
gorithms and the checkpoint library that comprise our
evaluation framework as well as our experimental re-
sults. We conclude with a discussion of the implications
of our experimental results for future checkpoint/restart
research, development and deployment.

II. BACKGROUND AND RELATED WORK

Checkpoint/restart [10] is perhaps the most com-
monly used HPC fault-tolerance mechanism. During
normal operation, checkpoint/restart protocols period-
ically record process (and communication) state to
storage devices that survive tolerated failures. Process
state comprises all the state necessary to run a process
correctly including its memory and register states. When
a process fails, a new incarnation of the failed process
is resumed from the intermediate state in the failed
process’ most recent checkpoint — thereby reducing the
amount of lost computation. Checkpoint/restart is a well
studied, general fault tolerance mechanism. However,
recent studies [4], [11], [12] predict poor utilizations
(approaching 0%) for applications running on imminent
systems and the need for dedicated reliability resources.

A. Strategies for Improving Checkpoint Performance

As computing systems increase in scale, the like-
lihood of a failure impacting the system increases
significantly requiring more frequent checkpoints. If

checkpoint/restart protocols are to be employed for fu-
ture extreme scale systems, checkpoint/restart overhead
must be reduced. For the checkpoint commit problem,
saving an application checkpoint to stable storage, we
can consider two sets of strategies.

The first set of strategies hide or reduce commit
latencies without actually reducing the amount of data to
commit. These strategies include concurrent checkpoint-
ing [13], [14], diskless checkpointing [15]-[18], check-
pointing filesystems [19], Remote checkpointing [20],
[21], Forked checkpointing [13], [14], [22]-[25].

The second set of strategies reduce commit latencies
by reducing checkpoint sizes. These strategies include
memory exclusion [26], incremental checkpointing [14],
[16]-[18], [22] and multi-level checkpointing [27].

III. CHECKPOINT COMPRESSION

Our strategy for improving checkpoint commit over-
head is based on data compression. In this section, we
describe the checkpoint compression viability model
that we use to determine when checkpoint compression
should be considered. We then discuss previous research
directly and indirectly related to our checkpoint data
compression study.

A. A Checkpoint Compression Viability Model

Intuitively, checkpoint compression is a viable tech-
nique when benefits of checkpoint data reduction out-
weigh the drawbacks of the time it takes to reduce the
checkpoint data. Our viability model is very similar to
the concept offered by Plank et al [28]. Fundamentally,
checkpoint compression is viable when compression la-
tency, tcompress, and the time to commit the compressed
checkpoint, t.. is less than the time required to commit
the uncompressed checkpoint,t,.:

tcompress + tee < luc
or

1—a)x :
c +(a) c__c¢

Tcompress Tcommit Tcommit

where c is the size of the original checkpoint, com-
pression factor « is the percentage reduction due to data
COMPIESSION, Teompress 18 compression-speed or the rate
of data compression, and rcommit is commit-speed or
the rate of checkpoint commit (including all associated
overheads). The last equation can be reduced to:

Tcommit
— <« (D
Tcompress

or

commit-speed

- < compression-factor (2)
compression-speed

In other words, if the ratio of the checkpoint commit
speed to checkpoint compression speed is less than
the compression factor, checkpoint data compression
provides an overall time (and space) performance re-
duction. Our model assumes that checkpoint commit is
synchronous; that is, the primary application process is
paused during the commit operation and is not resumed
until checkpoint commit is complete. In Section V, we
discuss the implications of this assumption.

B. Related Compression Research

Li and Fuchs implemented a compiler-based check-
pointing approach, which exploited compile time infor-
mation to compress checkpoints [29]. They concluded
from their results that a compression factor of over
100% was necessary to achieve any significant ben-
efit due to high compression latencies. Plank and Li
proposed in-memory compression and showed that, for
their computational platform, compression was benefi-
cial if a compression factor greater than 19.3% could
be achieved [28]. In a related vein, Plank et al also
proposed differential compression to reduce checkpoint
sizes for incremental checkpoints [30]. Moshovos and
Kostopoulos used hardware-based compressors to im-
prove checkpoint compression ratios [31]. Finally, in a
related but different context, Lee et al study compression
for data migration in scientific applications [32].

Our work (currently) focuses on the use of software-
based compressors for checkpoint compression. Given
recent advances in processor technologies, we demon-
strate that since processing speeds have increased at
a faster rate than disk and network bandwidth, data
compression can allow us to trade faster CPU workloads
for slower disk and network bandwidth.

IV. AN EVALUATION OF CHECKPOINT
COMPRESSION

In this study, we seek to answer several fundamental
questions regarding checkpoint data compression:

o Generally, can the compression benefit of reduced
checkpoint data sizes outweigh the additional la-
tency overheads necessary to compress checkpoint
data?

e Do the time or space scales of an application
impact checkpoint data compression?

e Does the viability of checkpoint data compression
change for application-level versus system-level
checkpoints?

Accordingly, our evaluation is devised to answer these
questions. We now describe the applications, tools and
experiments we use to answer these questions and

discuss the conclusions we have made based on our
experimental results.

A. Evaluation Tool Chain

We used a range of applications, libraries and utilities
in this study. In this section, we describe these various
components.

1) The Mini Applications: We chose four mini-
applications or mini apps' from the Mantevo
Project [6], namely HPCCG version 0.5, miniFE
version 1.0, pHPCCG version 0.4 and phdMesh
version 0.1. The first three are implicit finite element
mini apps and phdMesh is an explicit finite element
mini app. HPCCG is a conjugate gradient benchmark
code for a 3D chimney domain that can run on an
arbitrary number of processors. This code generates a
27-point finite difference matrix with a user-prescribed
sub-block size on each processor. miniFE mimics the
finite element generation assembly and solution for
an unstructured grid problem. pHPCCG is related
to HPCCG, but has features for arbitrary scalar and
integer data types, as well as different sparse matrix
data structures. PhdMesh is a full-featured, parallel,
heterogeneous, dynamic, unstructured mesh library for
evaluating the performance of operations like dynamic
load balancing, geometric proximity search or parallel
synchronization for element-by-element operations.

While the Mantevo mini apps are not (yet) as popular
as other HPC benchmarks like the NAS Parallel Bench-
marks or the HPC Challenge Benchmark, we feel the
mini apps are much better suited for this study. HPC
benchmarks generally target the evaluation of computer
system performance. On the other hand, the mini apps
are meant to be lightweight application proxies for the
heavyweight counterparts. In other words, the mini apps
are intended to mimic real application characteristics
including the memory footprint properties relevant to
this checkpoint compression study.

2) A Full Application: LAAMPS: In addition to the
mini apps, we wanted to evaluate checkpoint com-
pression with a full featured scientific application. We
chose LAMMPS (Large-scale Atomic/Molecular Mas-
sively Parallel Simulator). LAMMPS [7] is a classical
molecular dynamics code developed at Sandia National
Laboratories. For our experiments, we used the em-
bedded atom method (EAM) metallic solid input script
which is used by the Sequoia benchmark suite. The
LAMMPS code and input scripts are provided on the
LAMMPS web site [33].

'Mini apps are small, self-contained programs that embody essen-
tial performance characteristics of key applications.

3) Compression Utilities: For this study, we focused
on the popular compression algorithms investigated in
Morse’s comparison of compression tools [34]. We
settled on the following subset, which performed well
in preliminary tests’:

e zip: zip is an implementation of Deflate [35], a
lossless data compression algorithm that uses the
LZ77 [36] compression algorithm and Huffman
coding. It is highly optimized in terms of both
speed and compression efficiency. The =zip
algorithm treats all types of data as a continuous
stream of bytes. Within this stream, duplicate
strings are matched and replaced with pointers
followed by replacing symbols with new, weighted
symbols based on frequency of use.

We vary zip’s parameter that toggles the tradeoff
between compression factor and compression
latency. This integer parameter ranges from zero
to nine, where zero means fastest compression
speed and nine means best compression factor. In
our charts we use the label zip (x), where x is
the value of this parameter.

e 7zip [37]: 7zip is based on the Lempel-Ziv-
Markov chain algorithm (LZMA) [38]. This al-
gorithm uses a dictionary compression scheme
similar to LZ77 and has a very high compression
ratio.

e bzip2: bzip2 is an implementation of the
Burrows-Wheeler transform [39], which utilizes
a technique called block-sorting to permute the
sequence of bytes to an order that is easier to
compress. The algorithm converts frequently-
recurring character sequences into strings of
identical letters and then applies move to front
transform and Huffman coding.

We vary bzip2’s compression performance by
varying the block size for the Burrows-Wheeler
transform. The respective integer parameter ranges
in value from zero to nine a smaller value specifies
a smaller block size. In our charts, we use the label
bzip2 (x), where x is the value of this parameter.

o pbzip2 [39]: pbzip?2 is a parallel implementation
of bzip2. pbzip2 is multi-threaded and,
therefore, can leverage multiple processing cores
to improve compression latency. The input file to
be compressed is partitioned into multiple files

2We do not present results for several other algorithms, for example
gzip, that did not perform well.

that can be compressed concurrently.

We vary two pbzip2 parameters. The first
parameter is the same block size parameter as in
bzip2. The second parameter defines the file
block size into which the original input file is
partitioned. This is labeled as pbzip2 (x, y),
where x is the value of the first parameter and y
is the value of the second parameter.

e 1zip: rzip uses a very large buffer to take
advantage of redundancies that span very long
distances. It finds and encodes large chunk of
duplicate data and then use bzip2 as a backend
to compress the encoding.

We vary rzip’s parameter, which toggles
the tradeoff between compression factor and
compression latency. As was the case for zip,
this integer parameter ranges from zero to nine,
where one means fastest compression speed and
nine means best compression factor. In our charts
we use the label rzip (x), where x is the value
of this parameter.

4) Checkpoint/Restart Utilities: The Berkeley Lab
Checkpoint/Restart library (BLCR) [8], a system-level
infrastructure for checkpoint/restart, is an open source
checkpoint/restart library and is deployed on several
HPC systems. For most of our experiments, exclud-
ing some application specific checkpoints taken with
LAMMPS, we obtained checkpoints using BLCR. Fur-
thermore, we use the OpenMPI [40] framework, which
has integrated BLCR support.

For our scaling study we used a user-level check-
point library built into LAMMPS. LAMMPS can use
application-specific mechanisms to save the minimal
state needed to restart its computation. More specifi-
cally, it saves each atom location and speed. The largest
data structure in the application, the neighbor structure
used to calculate forces, is not saved in the checkpoint
and is recalculated upon restart. This scheme reduces
per-process checkpoint files to about one eighth of the
applications memory footprint.

B. Evaluating Checkpoint Compression Effectiveness

In order to evaluate the effectiveness of different
checkpoint compression schemes, we compressed many
checkpoints collected from our application and various
mini applications with different compression utilities.
We measured the performance metrics necessary for us
to analyze checkpoint viability using Equation 2 from
Section III.

For each application, we chose problem sizes that
would allow each application to run long enough so that
we can take at least 5 different checkpoints. For these
experiments, we were not concerned with application
scale. Primarily, we observed the compressibility of
checkpoints from singleton MPI tasks. For the three
implicit finite element mini apps, we chose a problem
size of 100x100x100. Both HPCCG and pHPCCG were
run with openMPI with 3 processes while miniFE was
run with 2 processes. phdMesh was run without MPI
support on a problem size of 5x5x5. We ran LAMMPS
with openMPI using 2 processors and a problem size
of 5x5x5. We pair each of the aforementioned HPC
workloads and parameterized compression algorithm.
For HPCCG the checkpoint interval was 5 seconds,
for miniFE and pHPCCG it was 3 seconds and for
phdMesh the 5 checkpoints were taken randomly. We
ran LAMMPS on a problem size of 5x5x5 and used an
interval of 60s to take the checkpoints. BLCR was used
to collect all checkpoints in this set of experiments.

For each of the mini apps, the average uncompressed
checkpoint size ranged from 311 MB to 393 MB. For
LAMMPS the checkpoint size was about 700MB on
average. Our first set of results, presented in Figure 1,
demonstrate how effective the various algorithms are at
compressing checkpoint data. We can see that all the
algorithms achieve a very high compression factor of
about 70% or higher for the mini apps and about 57-
65% for LAMMPS, where compression factor is com-
puted as: 1 — %' This means, then that the
primary distinguishing factor becomes the compression
speed, that is, how quickly the algorithms can compress
the checkpoint data.

Figure 2 shows how long the algorithms take to
compress the checkpoints. In general, and not surpris-
ingly, the parallel implementation of bzip2, pbzip2,
generally outperforms all the other algorithms.

Based on Equation 2, if the product of checkpoint
commit speed (or throughput) is less than the product of
compression factor and compression speed, checkpoint
compression will provide a time (and space) perfor-
mance benefit. Figure 3 shows this product derived from
our data. For each application in this Figure, the worse
case scenario for checkpoint compression viability is
the application’s maximum compression speed-factor
product across all compression algorithms. In the worse
case, miniFE, checkpoint compression is viable unless
a system can sustain a per process checkpoint commit
bandwidth of greater than 2 GB/s. In the best case,
phdMesh, the necessary per process checkpoint band-
width raises to greater than 7 GB/s. In Section V, we

describe the impact of these results in the context of
extreme scale systems. The executive summary is that
checkpoint compression is a very viable solution for
current and projected HPC systems.

C. Evaluating the Impact of Scale

For our scaling experiments, we use the LAMMPS
application along with its built-in checkpoint mecha-
nism. We wanted to observe how checkpoint viability
scales with (1)memory size; (2) time (between check-
points); and (3) process counts.

Our first set of scaling experiments were designed
for us to evaluate the first two scaling dimensions
checkpoint size and time between checkpoints. In the
first set of scaling experiments, we progressively in-
creased the LAMMPS problem size so that its memory
footprint and, therefore, the checkpoint size also would
increase. For each LAMMPS process, five checkpoints
were taken uniformly throughout the application run.
For a fixed number of processes, larger problem sizes
means longer runs, which means the time between
checkpoints also increased. For these tests, we fixed the
number of LAMMPS processes at two. The checkpoints
we collected from these tests averaged about 171MB,
344MB, 482MB, 688MB for the various problem sizes.

Figure 4 shows the viability results from these experi-
ments. We readily observe that in no case did checkpoint
size show any impact on the viability of checkpoint
compression for LAMMPS.

For the study of scaling in terms of process count,
we compare the compression ratios for a weak scaling
LAMMPS EAM simulation for between 2 and 128 MPI
processes. In each test, the per-process restart file size
is over 170 MB. In these runs we take 5 equally spaced
checkpoints. Figure 5 shows once again that application
process counts did not bear an impact on checkpoint
viability. For clarity of the graph, we only show from
16 to 128 MPI processes. Data from the smaller runs
further corroborate our findings. Additionally, we have
no reason to believe these results will be different for
larger process count runs.

D. Evaluating the Impact of User versus System Level
Checkpoints

Lastly in this section, we examine the compression
ratios of system-level checkpoints versus that of appli-
cation specific checkpoints. Again, we use LAMMPS
for this testing due to its optimized, application specific
checkpointing mechanism described in the previous
section. For these tests we compare the compression
ratios of the application generated restart files with those
generated by BLCR. Both with and without BLCR,

12000
@ HrPccc @ miniFE OpHPCCG @ phdMesh B Lammps with BLCR

QRN

pbzip(1,1) pbzip(1,5) pbzip(5,1) pbzip(9,9) zip(1) zip(3) zip(B) zip(9 rzip(3 bzip2(1) bzip2(9) Tzip
Compression Algorithm

100.00

8000

6000

Compression Factor(%)
e
=]
(=]
(=]

2000

0.00

Figure 1. Checkpoint compression ratios for the various algorithms and applications.

20000.00

80000.00

@ HPCCG

7000000 @ miniFE
2 600000 O pHPCCG
= @ phdMesh
& 50000.00 B Lammps with BLCR
»
§ 4000000
w
@ 30000.00
=%
§ 20000.00
O

10000.00 I I

0.00 u:h ‘:L I.Eh

pbzip(1,1) pbzip(1,5) pbzip(5,1) pbzip(9,9) zip(1) zip(3) zip(6) zip(9) rzip(3) bzip2(1) bzip2(9) 7zip
Compression Algorithm

Figure 2. Checkpoint compression times for the various algorithms and applications.

- 800

& B HPCCG

g 7.00 B miniFE

g OpHPCCG

w G @ phdMesh

=} B Lammps with BLCR
% 5.00

a

£ 400

S

[&]

X 3.00

B

[+

& 2

[=

i=]

@ 100

@

(&} pbzip(1,1) pbzip(1,5) pbzip(5,1) pbzip(9,9) zip(1) zip(3) zip(6) zip(9) rzip(3) bzip2(1) bzip2(9) 7zip

Compression Algorithm

Figure 3. Checkpoint Compression Viability: Unless, checkpoint commit rate exceeds the compression speed X compression factor product
(y-axis), checkpoint compression is a good solution.

=]

e

L]

pbzip(1,1) pbzip(1,5 Pbzip(5,1) pbzip(9,9) zip(1)

Compression Speed x Compression Factor (GB/s)

18
16
14
12
1
0.8
0.
0.
0.
0

zip(3)

B - 171MB @ ~344MB O ~482MB B ~688MB

zip(6) zip(9) rzip(3) bzip2(1) bzip2(9) 7zip

Compression Algorithm

Figure 4. Scaling Checkpoint Sizes: Comparison of compression viability at different scales.

Compression Speed x Compression Factor (GB/s)

pbzip(1,1) pbzip(1,5 pbzip(5,1) pbzip(9,9) =zip(1)

18
16
14
12
1
08
06
04
0 mn 0

zip(3)

B 16 Nodes
@ 32 Nodes
064 Nodes
@ 128Nodes

zip(B) zip(9) rzip(3) bzip2(1) b2|p2 9) ?’Z|p

Compression Algorithm

Figure 5.

we take 5 checkpoints equally spaced throughout the
application run, with the averages displayed.

System-level checkpointing saves a snapshot of the
application context such that it can be restarted where
it left off. Application specific checkpointing , on the
other hand, only needs to save the data needed to
resume operation. As a result, for a fixed problem,
system level checkpoints are typically much larger in
size. This size difference was also observed in our
testing. For example, LAMMPS built-in checkpoint-
ing scheme generated checkpoints of about 170MB,
in comparison to BLCR generated checkpoints which
were 700MB on average. Regardless of the two types
of checkpoints, our checkpoint viability model shows
consistent results. In Figure 6, we observe that no matter

Scaling Process Counts: Comparison of compression viability at different scales.

what the approach, system versus application-specific,
the viability of checkpoint compression remains the
same for LAMMPS. This makes sense for many HPC
workloads as the the address space is comprised mostly
of application data. Therefore, though user level check-
points are smaller in size, application data is expected
to have same “fingerprint” and therefore exhibit similar
compression properties.

V. DISCUSSION

A. Compression versus Checkpoint I/0 Bandwidth

As mentioned earlier, the relationship between com-
pression speed and checkpoint I/O bandwidth is the
key factor of the viability of checkpoint compression.
As Figure 3 shows, checkpoint compression is viable

250

2,00

(=

(=

pbzip(1,1) pbzip(1,%) pbzip(5,1)

Compression Speed x Compression Factor (GBp:

Figure 6.
algorithms

with current compression algorithms at per-process
checkpoint bandwidths less than 2 and 5 GB/sec. For
comparison, the Oak Ridge Cray XTS5 Jaguar petascale
system has per-node and per-core checkpoint band-
widths of 5.3 MB/s and 1 MB/s, respectively, a fac-
tor of 1000 difference in performance. Similarly, the
Lawrence Livermore Dawn IBM BG/P system has per-
node checkpoint bandwidths of approximately 2 MB/s
3 As a result, aggressive use of checkpoint compression
appears to be viable and indeed desirable on current
large-scale platforms.

The viability of checkpoint compression on future
systems depends highly on future computer storage
architecture developments. One report suggested using
more than one disk per processor to provide suffi-
cient storage bandwidth for high-speed checkpointing
(5 GB/sec per process) [43]. Other researchers have
suggested using similar approaches that combine non-
volatile memories with spinning storage to somewhat
reduce the potential costs of the checkpoint file system
[44], though still anticipates spending over $60M on the
storage system. These bandwidths are at the boundary
of where checkpoint compression is viable, and so it is
unclear whether or not checkpoint compression would
be useful if such high-bandwidth (and expensive) I/O
systems were adopted.

Importantly, checkpoint compression also reduces the

30ak Ridge’s Spider Lustre-based file system provides 240 GB/sec
of aggregate bandwidth [41], while Dawn’s Lustre file system is listed
as providing 70 GB/sec of peak bandwidth on LLNLL reference
pages [42].

1.50

1.0

) I .

0.00 -

pbzip(9,9) zip(1) zip(3)

B Lammps with BLCR
@ Lammps without BLCR

Zip(B) Zip(9) rzip(3) bzip2{1) bzip2(9) Tzip

Compression Algorithm

Comparison of system level Checkpoint and application specific checkpoint in terms of compression Viability for the various

bandwidth pressure on checkpointing file systems. If
power and cost of such storage systems are important
design limiters compared to the CPU power and costs,
as is expected [43], checkpoint compression could be
an important technology in reducing the demands on
exascale storage systems. Additional work is therefore
needed to examine the impact of checkpoint compres-
sion on file system design, especially given the current
uncertainty in terms of CPU architectures, levels of
parallelism, and memory sizes in these systems.

B. Future Enhancements

Our results show that different compression algo-
rithms perform differently in terms of compression
factor or compression speed while compressing check-
points from different applications. We would like to
understand what affects the performances of these al-
gorithms and based on this predict the optimal com-
pression algorithm for a particular application. This will
improve application based checkpointing performance
as the application developers can provide compression
while taking checkpoints as well as checkpoint infras-
tructures can provide in memory compression. In our
tests, for simplicity we assumed the compression time
as the time to read the uncompressed file + time to
compress the file + time to write back the compressed
file into disk. Using in memory compression we can
eliminate the read and write time, thus reducing the
compression time even further giving us better speedup.
We leave this as future work.

The positive impact of compression performance on

checkpoints opens the door to a number of research
possibilities that is not addressed in this work. Graphics
processing units (GPUs) typically have many more
processing cores and wider memory buses than con-
ventional CPUs. Given their high processing power
and memory throughput a lot of work is going on
among the GPU communities to leverage these benefits
for data compression [45]-[48]. O‘Neil and Burtscher’s
GPU based compression library GFC [47] achieved a
rate of 75 Gb/s which emphasizes the effectiveness
of GPU based compression. Exploring our checkpoint
compression performance using GPUs is ongoing.

Acknowledgments

This work was supported in part by Sandia Na-
tional Laboratories subcontract 438290. Sandia National
Laboratories is a multiprogram laboratory managed
and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-AC04-94AL85000.
The authors are grateful to the members of the Scalable
Systems Laboratory at the University of New Mexico
and the Scalable System Software Group at the Sandia
National Laboratory for helpful feedback on portions
of this study. We also acknowledge our reviewers for
comments and suggestions for improving this paper.

REFERENCES

[1] “Top 500 Supercomputer Sites,” http://www.top500.org/
(visited Segtember 2011). [Online]. Available: http:
/Iwww.top500.org/

[2] “ASC Sequoia,” https://asc.lInl.gov/computing_
resources/sequoia (visited May 2011). [Online]. Avail-
able: https://asc.lInl.gov/computing_resources/sequoia/

[3] P. Kogge, “ExaScale Computing Study: Technology
Challenges in Achieving Exascale Systems,” Defense
Advanced Research Projects Agency Information Pro-
cessing Techni%ues Office (DARPA IPTO), Tech. Rep.,
September 2008.

[4] G. Gibson, B. Schroeder, and J. Digney, “Failure
tolerance in petascale computers,” CTWatch Quarterly,
vol. 3, no. 4, November 2007. [Online]. Avail-
able: http://www.ctwatch.org/quarterly/articles/2007/11/
failure-tolerance-in-petascale-computers/

[5] B. Schroeder and G. A. Gibson, “A large-scale study of
failures in high-performance computing systems,” in De-
pendable Systems and Networks (DSN 2006), Philadel-
phia, PA, June 2006.

[6] M. A. Heroux, D. W. Doerfler, P. S. Crozier, J. M.
Willenbring, H. C. Edwards, A. Williams, M. Rajan,
E. R. Keiter, H. K. T. quist quist quist quist, and
R. W. Numrich, “Improving performance via mini-
applications,” Sandia National Laboratory, Tech. Rep.
AND2009-5574, 2009.

[7] S. J. Plimpton, “Fast parallel algorithms for short-range
molecular dynamics,” Journal Computation Physics, vol.
117, pp. 1-19, 1995.

(8]

(91

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

(20]

P. H. Hargrove and J. C. Duell, “Berkeley lab check-
point/restart (blcr) for linux clusters,” Journal of Physics:
Conference Series, vol. 46, no. 1, 2006.

D. Ibtesham, D. Arnold, K. Ferreira, and P. Bridges, “On
the viability of checkpoint compression for extreme scale
fault tolerance,” in Lecture Notes in Computer Science:

Proceedings of the 17" European Conference on Par-

allel and Distributed Computing (Euro-Par) 2011: 4"
Workshop on Resiliency in High Performance Computing
(Resilience) in Clusters, Clouds, and Grids. Bordeaux,
France: Springer Verlag, Berlin, Germany, Aug. 29 -
Sep. 2, 2011.

E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B.
Johnson, “A survey of rollback-recovery protocols in
message-passing systems,” ACM Computing Surveys,
vol. 34, no. 3, pp. 375408, 2002.

E. N. Elnozahy and J. S. Plank, “Checkpointing for
peta-scale systems: A look into the future of practical
rollback-recovery,” IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 2, pp. 97-108, April-
June 2004.

K. Ferreira, R. Riesen, P. Bridges, D. Arnold, J. Stearley,
J. H. L. III, R. Oldfield, K. Pedretti, and R. Brightwell,
“Evaluating the viability of process replication re%iability
for exascale systems,” in ACM/IEEE Conference on
Supercomputing (SC’11), Nov. 2011 [to appear].

K. Li, J. F. Naughton, and J. S. Plank, “Real-time,
concurrent checkpoint for parallel programs,” in 2nd
ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming (PPOPP ’90). Seattle, Wash-
ington: ACM, 1990, pp. 79-88.

——, “Low-latency, concurrent checkpointing for par-
allel Erograms,” IEEE Transactions on Parallel and
Distributed Systems, vol. 5, no. 8, pp. 874-879, August
1994.

J. Plank, K. Li, and M. Puening, “Diskless checkpoint-
ing,” Parallel and Distributed Systems, IEEE Transac-
tions on, vol. 9, no. 10, pp. 972-986, oct 1998.

G. Bronevetsky, D. Marques, K. Pingali, S. McKee, and
R. Rugina, “Compiler-enhanced incremental checkpoint-
ing for openmp applications,” in Proceedings of the 2009
IEEE International Symposium on Parallel&Distributed
Processing. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 1-12. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1586640.1587642

Y. Chen, K. Li, and J. S. Plank, “Clip: A checkpointing
tool for message-passing parallel programs,” in
SuperComputing 97, San Jose, CA, 1997. [Online].
Available: citeseer.ist.psu.edu/chen97clip.html

J. S. Plank, M. Beck, G. Kingsley, and K. Li, “Libckpt:
Transparent checkpointing under unix,” in USENIX Win-
ter 1995 Technical Conference, New Orleans, LA, Jan-
uary 1995, pp. 213-224.

J. Bent, G. Gibson, G. Grider, B. McClelland,
P. Nowoczynski, J. Nunez, Polte, and
M. Wingate, “Plfs: a checkpoint filesystem for parallel
applications,” in Conference on High Perlformance
Computing Networking, Storage and Analysis (SC
'09), ser. SC ’09. New York, NY, USA:

, , pp. 21:1-21:12. [Online]. Available:
http://doi.acm.org/10.1145/1654059.1654081

G. Stellner, “Cocheck: Checkpointing and process mi-
gration for MPL” in International Parallel Processing
Symposium. ~ Honolulu, HI: IEEE Computer Society,
April 1996, pp. 526-531.

[21]

(22]

(23]

[24]

[25]

(26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

V. C. Zandy, B. P. Miller, and M. Livny, ‘“Process
hijacking,” in 8th International Symposium on High Per-
formance Distributed Computing (HPDC °99), Redondo
Beach, CA, August 1999, pp. 177-184

E. N. Elnozahy, D. B. Johnson, and W. Zwaenpoel,
“The performance of consistent checkpointing,” in 1/th
IEEE Symposium on Reliable Distributed Systems,

Houston, , 1992. [Online]. Available: citeseer.ist.psu.
edu/elnozahy92performance.html

S. I. Feldman and C. B. Brown, “Igor: A system for
program debugging via reversible execution,” in 7988
ACM SIGPLAN and SIGOPS Workshop on Parallel and
Distributed Debugging (PADD ’'88). New York, NY:
ACM Press, 1988, pp. 112-123.

J. Leon, A. L. Fisher, and P. Steenkiste, “Fail-safe
pvm: A portable package for distributed programming
with transparent recovery,” Carnegie Mellon University,
liétésg’burgh PA, Tech. Rep. CMU-CS-93-124, February

D. Z. Pan and M. A. Linton “Su})é)ortlng reverse exe-
cution for parallel programs, 88 ACM SIGPLAN
and SIGOPS Workshop on Parallel and Distributed
Debugging (PADD ’88). Madison, WI: ACM Press,
1988, pp. 124-129.

J. S. Plank, Y. Chen, K. Li, M. Beck, and G. Kings-
ley, “Memory exclusion: Optimizing the performance of
checkpointing systems,” Software — Practice & Experi-
ence, vol. 29, no. 2, pp. 125-142, 1999.

G. Bronevetsky, K. Mohror, and
. Supinski, ~“Design, modeling, and
evaluation of a scalable multi-level checkpointing
system,” in Proceedings of the 2010 ACM/IEEE
International ~ Conference for High Per/’formance
Computing, Networking, Storage and Analysis, ser.
C ’10. Washmgton DC USA: IEEE Computer
Society, 2010, ~11. [Online]. Available:
http://dx.doi. org/lO 1109/SC 2010.18

A. dy,
a Moo c{e

J. S. Plank and K. Li, “ickp: A consistent checkpointer
for multicomputers,” Parallel & Distributed Technology:
Systzms & Applications, IEEE, vol. 2, no. 2, pp. 62-67,
1994.

C.-C. Li and W. Fuchs, “Catch-compiler-assisted tech-

% ues for checkpointing,” in Fault-Tolerant Computing,

990. FTCS-20. Digest of Pa ers, 20th International
Symposmm jun 1990, pp. 74—

J. S. Plank, J. Xu, and R. H. B. Netzer, “Compressed
differences: An algorithm for fast incremental
checkpointing,” University of Tennessee, Tech. Rep.
CS-95-302, August 1995. [Online]. Available: http:
/Iweb.eecs.utk.e u/~plank/plank/papers/CS-95-302.html

A. Moshovos and A. Kostopoulos, “Cost-effective, high-
performance gltﬁva scale checkpoint/restore,” Unlver51ty
of Toronto, Tech. Rep., November 2004.

J. Lee, M. Winslett, X. Ma, and S. Yu, “Enhancing data
migration performance via parallel data compression,”
in Parallel and Distributed Processing Symposium., Pro-
ceedings International, IPDPS 2002, Abstracts and CD-
ROM, 2002, pp. 444-451.

Sandia National Laboratories. (2010, April) The
LAMMPS molecular dynamics simulator. [Online].
Available: http://lammps.sandia.gov

K. G. M. Jr.,, “Compression tools compared,” no. 137,
September 2005.

10

(35]

(36]

(37]
(38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

P. Deutsch, “Deflate comgressed data format
spe01ﬁcat10n” [Online]. Available: ftp:/ftp.uu.net/pub/
archiving/zip/doc

J. Ziv and A. Lempel, “A universal algorithm for se-
%uentlal data compression,” Information Theory, IEEE
ransactions on, vol. 23, no. 3, pp. 337-343, May 1977.
“Tzip project official home page,” http://www.7-zip.org.

I. Pavlov, “Lzma sdk (software development kit),” 2007.
[Online]. Available: http://www.7-zip.org/sdk.html

J. G. Elytra, “Parallel data compression with bzip2.”

E. Gabriel, G. Fagg, G. Bosilca, T. Angskun,
J. Dongarra, J. Squyres, V. Sahay, P. Kambadur,

B. Barrett, A. Lumsdaine, R. Castain, D. Daniel,
R. Graham, and T. Woodall, “Open MPI: Goals,
concept, and design of a next generation MPI

in Parallel
Interface, ser.
Kranzlmiiller,

implementation,” in Recent Advances
Virtual Machine and Message Passin,
Lecture Notes in Computer Science,

P. Kacsuk, and J. Dongarra, Eds. Springer Berlin
/" Heidelberg, 2004, vol. 3241, 353-3717,
10.1007/978-3-540-30218- 6_19. [Onllne] Available:

http://dx.doi.org/10.1007/978-3-540-30218-6_19

G. Shipman, D. Dillow, S. Oral, and F. Wang, “The
Spider center wide file system: From concept to reality,”
in Proceedmgs of the 2009 Cray User Group (CUG)
Conference, Atlanta, GA, May 2009.

B. Barney. (2011, August) Introduction to
livermore computing resources. [Online]. Available:
http://computing.llnl.gov/tutorials/lc_resources

K. Bergman, S. Borkar, D. Campbell, W. Carlson,
W. Dally, M. Denneau, P. Franzon, W. Harrod, K. Hill,
J. Hiller, S. Karp, S. Keckler, D. Klein, P. Kogge,
R. Lucas, M. Richards, A. Scarpelli, S. Scott, A. Snavely,
T. Sterling, R. S. Williams, and K. Yelick, “Exascafe
computing study: Technology challenges in achieving
exascale systems,” http://www.science. ener§ y.gov/asct/
lziggiegarch/CS/DARPAexascale hardware(2008).pdf, Sep.

G. Grider, “Exa-scale FSIO: Can we get there? can we
afford to?” in Proceedings of the 7th IEEE Workshop on
Storage Network Architecture and Parallel 1/Os, 2011.

M. Strengert M. Magallén, D. Weiskopf, S. Guthe,
and T. Ertl, “Hierarchical visualization and compres-
sion of large volume datasets using GPU clusters,” in
In Eurographics Symposium on Parallel Graphics and
Visualization (EGPGV04) (2004, 2004, pp. 41]7

W. Fang, B. He, and Q. Luo, “Database compression on
graphics processors.”

M. A. O’Neil and M. Burtscher, “Floating-point data
compression at 75 gb/s on a GPU,” in Proceedings of
the Fourth Workshop on General Purpose Processing
on Graphics Processing Units, ser. GPU-4. New
York, NY, USA: ACM, 2011, pp. 7:1-7:7. [Online].
Available: http://doi.acm.org/10.1145/1964179.1964189

R. L. Cloud, M. L. Curry, H. L. Ward, A. Skjellum, and
P. Bangalore, “Accelerating lossless data compression
with GPUs,” CoRR, vol. abs/1107.1525, 2011.

