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An understanding of MgO is important to
planetary modeling
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= MgO is an end member of
the (Mg,Fe)O mineral that
comprises a large fraction of
the earth’s mantle

= The shock behavior and e
transport properties are
important to the study of
giant impacts (A1.01)

- Yerust

= Useful check of experimental
methodology: simple
structure and transport
properties
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State of experiments prior to 2012
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= Possibility of shock melting Pressure (GP)

Svendsen and Ahrens, Geophys. J. R. astr. Soc. 91, 667 (1987)

was unclear
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State of theory prior to 2012 ) 5.

= DFT and QMC predicted
solid-solid phase transition ¢ |

at ~ 570-600 GPa ) AN
= Meltcurve as a functionof S =
pressure from DFT-MD Alfe, PRL 94, 235701 (2005) H

Enthalpy (eV/a

= Wide range phase diagram
utilizing ab initio - -
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New theory paper refines phase boundaries
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Opportunity exists for theory and i)
experiment to complement each other

= DAC experiments in 3+ Mbar and 5,000K + regime are
technologically difficult (currently impossible?)

= Dynamic experiments are typically limited by the ability to
diagnose the product states

= Ab inito methods have potential theoretical limitations for
studying the EOS of MgO

= Free energy is difficult to compute and subject to uncertainties
(H4.02)

= “Band gap problem” in DFT will lead to premature metallization

= Modest system sizes leave molecular dynamics calculations subject to
difficult to converge errors
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Two recent dynamic experiments

offer new data

Steady shock from flyer plates

= Root et al. Vv
Al 6061 —

Flyer Plate

\

MgO
Samples

Opaque
samples

" Measure u,, reflectivity and u,, via
impedance matching

= Longer transit times (~25 ns)

= Large number of shots to different
final pressures (>30)
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Laser driven decaying shock

=  McWilliams et al. Science 338, 1330

(2012) ., v
‘I» % Interferometer
g (532 nm)
g Pyrometer
» . (broadband)

laser ablator anti-reflection
coating coating

= Measure u,, reflectivity and T as a
function of time

= Potentially map entire Hugoniot in a
single shot

" Mustinfer u, from knowledge of
Hugoniot

= Short time scales (transit through
MgO lasts ~10 ns)




Experiments do not perfectly agree, leading () &=

Laboratories

to difference in interpretation

Shock velocity Ug (km/s)

McWilliams et al. measures u, and T, using preexisting
knowledge of Hugoniot to infer pressure
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Experiments do not perfectly agree, leading ()&=
to difference in interpretation

" Root et al. use many shots to map u; vs u, along the Hugoniot

" Phase changes are inferred by assuming ug vs u, is linear in
any given phase

. . . 24 - & ZData, this work
= Similar method applled to - ©  McWilliams, 2012

22 e Zzhang, 2008

diamond (Knudson et al, oL ¢ svendsen, 1967
Science 322, 1822 (2008). .

18 | © LASL Shock Handboo
= Coincident with last break, 2
shock becomes reflective o ¢

) Coexist

12

= |mplies large coexistence
between B2 and liquid

—B1Fit
—B2Fit
—— B2-Liquid Coexistence -
Liquid Fit
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Gain insight by comparing experiments to ) e

Laboratories

ab inito calculations

24 - & ZData, this work 2% A
- 0 McWilliams, 2012 A
: . ) ’ 2
= Calculate Hugoniot using DFT-ML [ : Zazoe e
1 H 201 © assiiou’
as implemented in VASP® o e Fe'
= Electronic states occupied @ 6 &
: e £ “
according to Mermin’s finite- S w¢ 0
temperature formulation with 2 *
. 10 cy‘? ® DFT, B1Phase |
AMOS funCtIOna| L @9 ® DFT,B2Phase
] . L 8 |- gy ® DFT, Liquid
= Satisfy the Hugoniot Condition: N
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14
2(E _Eref )_ (P"' Pref xvref _V): 0 U, (km/s)
= Finite size (~250 atoms) and y :\/p[L_lj
p
duration (~3 ps) of simulations Po P
require symmetry to be imposed ” :\/ P/py
(l_po/p)

in the solid phase

* G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993) and Phys. Rev. B 49, 14251 (1994).



Directly calculate Solid-Melt Boundaries @) .

* For melting boundary use two phase * Run at different temperatures and
coexistence simulations watch phase boundary

* Place solid and liquid in contact with ¢ Relative heat capacities and enthalpy
each other of melting determine range of
coexistence




Directly calculate Solid-Melt Boundaries @ &:=..

* For melting boundary use two

phase coexistence simulations — B1-melt, Alfé ' L '
16000 [-— A— B1-melt, Belenoshko .
* Place solid and liquid in (a000 L7~ BZmelt Belenoshoko ]
. = ®-—B1-melt, this work
contact with each other " e B2-melt, this work
12000 -
* Run at different temperatures £
~ i
and watch phase boundary 2
©
E 8000 -
e Relative heat capacities and % -
enthalpy of melting determine "~
range of phase coexistence 4000 7
2000 |- -
* Follow work of Belonoshko, .
but include quantum 0 100 200 300 400 500 600 700
calculations of B2 phase Pressure (GPa)

melting

13
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. . . ﬁgggﬁal
Calculation of solid-solid phase boundary ~ @E=..

B1 MgO, rho = 6.81 glce, P(T->0) = 392 GPa

6
e At low temperatures, harmonic sl
. . . From Thermodynamic Integration ——
phonon approximation provides free s | Fromauashamonic caicuation -
energies g
L 3r
* Entropy can be calculated directly 2 5l
using analogy to finite temperature i | /’
quantum harmonic oscillator

0 L L I L L I L L L
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. . Temperature
* Approximation breaks down for -
- - - - B1-B2, this work (quasi-harmonic) )
mOderate temperatu res 16000 [— B1-B2, this work (Thermodynamic Integration) T
[ — = -B1-B2, Belenoshko (quasi-harmonic) i
. . 14000 |- . -
e Effectis strongest in B1 phase e .
_ o _ 12000 e Ba.melt, this work §
* Switch to thermodynamic integration S | ]
using multiple DFT-MD calculations 2 . e
along each isochore 2
S 6000 -
* Resulting phase boundary finds triple 4000 | §
point between B1, B2 and liquid »o00 | ]
\
1 . i . Li . 1 . i
0 100 200 300 400 500 600 700
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New phase diagram with Hugoniot .
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= Knowledge of phase boundaries allows for the metastable
simulations to be eliminated

= How does this compare to experiments

15



Use QMD to assign temperatures to the Sandia

experiment

No pyrometry is available for the

Root et al data set

Close agreement with QMD
allows for possibility of using

theoretical temperatures
Construct T(u,) along the

Hugoniot from QMD
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1200 . This work

®  Zhang, 2008
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Theory and experiment agree on Hugoniot
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= DFT confirms a large coexistence region between B2 and liquid on the

Hugoniot

T T T
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= Use U, vs T fit from DFT calculations and apply to Root data
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Comparison to McWilliams results )
suggests role of kinetics

N
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Reflectivity change provides additional @i
evidence of melt boundary

= McWilliams and Root both measure reflectivity at 532nm as a
consequence of their use of VISAR interferometry

= |n each case, the reflectivity disappears for shock speeds less
than ~18 km/s

= Explanation due to metal to msulator transition going from
liquid to B2 phase [t ' ":_;.:ﬂ%

~—— Omega shol 57513
skl— Janus compilation 4
Stevens et al. 2005 }[ L

19.0 20.0 21.0 220
Shock velocity Ug (km/s)

McWilliams et al. Science. 338, 1330 (2012)
19




Confirm melting hypothesis by calculating (@) &=,
reflectivity using QMD

Use Kubo-Greenwood
formulation on snapshots from
the B2 solid and liquid near the
melt boundary

Kramers-Kronig relation allows
calculation of complex dielectric
function

2(®)___PI I(V)OO

T (v? —0))

Use of HSE functional provides a
better description of the gap
and the reflectivities agree with
experiment

Optical conductivity of solid

Solid reflectivity at 532 nm: 0.02%
Liquid reflectivity at 532 nm: 1.1%




New experimental technigues combined with theoretical )
tools allow quantitative exploration of an unprecedented horores
region of phase space for geomaterials

e Accurately measured the MgO
Hugoniot from 330 GPa to 1160 GPa

26000 |- ' B1 mlelt, Alfé: ' ' ' ' ' A

« Data starts at pressures and 24000 [ —®~B1 melt, this work P o]
temperatures that had never been 22000 |~ B1"B2Boundary, this work .

. - — = =B1-B2, Belenoshko L

probed prior to 2012 20000 = ¢ ) melt, this work 7

18000 |- B2 melt, this work o -

. . o - : : o 1

* MgO has a large coexistence region 5 16000 [ © 2z datawith DFTUs - TFit 0 .
: S 1a000 [ y

along the Hugoniot between B2 and ¢ [ .
L. £ 12000 | ]
Iqu|d £ 10000 -— B1 DFT Hugoniot -
o ) 8000 | B2 DFT Hugoniot ]

* Significant to planetary and moon formation coo | Liquid DFT Hugoniot 1
. e -

*  Shock pressures of ~7 Mbar or greater needed 4000 s . ]
to completely melt cold MgO 2000 - o ]

[ B . " . 1 . -
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e Vastly expanding the domain of
guantitative understanding for
geomaterials
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