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An understanding of MgO is important to 
planetary modeling 

 MgO is an end member of 
the (Mg,Fe)O mineral that 
comprises a large fraction of 
the earth’s mantle

 The shock behavior and 
transport properties are 
important to the study of 
giant impacts (A1.01)

 Useful check of experimental 
methodology: simple 
structure and transport 
properties
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State of experiments prior to 2012

 Diamond anvil cell 
measurements of melt

 Diamond anvil cell XRD, 
Brillouin spectroscopy etc.

 Gas gun driven Hugoniot 
measurements of us-up and 
temperature

 Possibility of shock melting 
was unclear
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State of theory prior to 2012

 DFT and QMC predicted 
solid-solid phase transition 
at ~ 570-600 GPa

 Melt curve as a function of 
pressure from DFT-MD

 Wide range phase diagram 
utilizing ab initio 
calculations
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New theory paper refines phase boundaries 
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Opportunity exists for theory and 
experiment to complement each other

 DAC experiments in 3+ Mbar and 5,000K + regime are 
technologically difficult (currently impossible?)

 Dynamic experiments are typically limited by the ability to 
diagnose the product states

 Ab inito methods have potential theoretical limitations for 
studying the EOS of MgO
 Free energy is difficult to compute and subject to uncertainties 

(H4.02)

 “Band gap problem” in DFT will lead to premature metallization

 Modest system sizes leave molecular dynamics calculations subject to 
difficult to converge errors 
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Two recent dynamic experiments 
offer new data

Laser driven decaying shock

 McWilliams et al. Science 338, 1330 
(2012)

 Measure us, reflectivity and T as a 
function of time

 Potentially map entire Hugoniot in a 
single shot

 Must infer up from knowledge of 
Hugoniot 

 Short time scales (transit through 
MgO lasts ~10 ns)

Steady shock from flyer plates 

 Root et al. 

 Measure us, reflectivity and up via 
impedance matching

 Longer transit times (~25 ns)

 Large number of shots to different 
final pressures (>30)
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Experiments do not perfectly agree, leading 
to difference in interpretation

 McWilliams et al. measures us and T, using preexisting 
knowledge of Hugoniot to infer pressure
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 Suggests large latent heat from B1-
B2 solid, combined with small 
change at melt boundary



Experiments do not perfectly agree, leading 
to difference in interpretation

 Root et al. use many shots to map us vs up along the Hugoniot

 Phase changes are inferred by assuming us vs up is linear in 
any given phase

 Similar method applied to
diamond (Knudson et al, 
Science 322, 1822 (2008). 

 Coincident with last break,
shock becomes reflective

 Implies large coexistence
between B2 and liquid
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Gain insight by comparing experiments to 
ab inito calculations

 Calculate Hugoniot using DFT-MD 
as implemented in VASP*

 Electronic states occupied 
according to Mermin’s finite-
temperature formulation with 
AM05 functional

 Satisfy the Hugoniot Condition: 

 Finite size (~250 atoms) and 
duration (~3 ps) of simulations 
require symmetry to be imposed 
in the solid phase
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Directly calculate Solid-Melt Boundaries
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• For melting boundary use two phase 
coexistence simulations

• Place solid and liquid in contact with 
each other

• Run at different temperatures and 
watch phase boundary

• Relative heat capacities and enthalpy 
of melting determine range of 
coexistence



Directly calculate Solid-Melt Boundaries
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• For melting boundary use two 
phase coexistence simulations

• Place solid and liquid in 
contact with each other

• Run at different temperatures 
and watch phase boundary

• Relative heat capacities and 
enthalpy of melting determine 
range of phase coexistence

• Follow work of Belonoshko, 
but include quantum 
calculations of B2 phase 
melting



Calculation of solid-solid phase boundary

• At low temperatures, harmonic 
phonon approximation provides free 
energies

• Entropy can be calculated directly 
using analogy to finite temperature 
quantum harmonic oscillator

• Approximation breaks down for 
moderate temperatures

• Effect is strongest in B1 phase

• Switch to thermodynamic integration 
using multiple DFT-MD calculations 
along each isochore

• Resulting phase boundary finds triple 
point between B1, B2 and liquid
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New phase diagram with Hugoniot

 Knowledge of phase boundaries allows for the metastable 
simulations to be eliminated

 How does this compare to experiments 15



Use QMD to assign temperatures to the Sandia 
experiment

 No pyrometry is available for the 
Root et al data set

 Close agreement with QMD 
allows for possibility of using 
theoretical temperatures

 Construct T(us) along the 
Hugoniot from QMD
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Theory and experiment agree on Hugoniot

 Use Us vs T fit from DFT calculations and apply to Root data 

 DFT confirms a large coexistence region between B2 and liquid on the 
Hugoniot
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Comparison to McWilliams results 
suggests role of kinetics
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 Excellent agreement at higher 
pressures in liquid phase

 Slight discrepancy with 
temperature at high pressure 
explained by calibration

 Disagreement occurring at 
B2 – Melt boundary

 Decreased luminance due to 
scattering in two phase 
region?

 Extrapolation of us(t) for 
nonreflective shocks?

 Metastable liquid observed in 
decaying shock front?

Pyrometer Calibration



Reflectivity change provides additional 
evidence of melt boundary
 McWilliams and Root both measure reflectivity at 532nm as a 

consequence of their use of VISAR interferometry

 In each case, the reflectivity disappears for shock speeds less 
than ~18 km/s

 Explanation due to metal to insulator transition going from 
liquid to B2 phase
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Confirm melting hypothesis by calculating 
reflectivity using QMD
 Use Kubo-Greenwood 

formulation on snapshots from 
the B2 solid and liquid near the 
melt boundary

 Kramers-Kronig relation allows 
calculation of complex dielectric 
function

 Use of HSE functional provides a 
better description of the gap 
and the reflectivities agree with 
experiment
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New experimental techniques combined with theoretical 
tools allow quantitative exploration of an unprecedented 
region of phase space for geomaterials

• Accurately measured the MgO 
Hugoniot from 330 GPa to 1160 GPa

• Data starts at pressures and 
temperatures that had never been 
probed prior to 2012

• MgO has a large coexistence region 
along the Hugoniot between B2 and 
liquid

• Significant to planetary and moon formation

• Shock pressures of ~7 Mbar or greater needed 
to completely melt cold MgO 

• Vastly expanding the domain of 
quantitative understanding for 
geomaterials
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