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Target Application: Capillary 

Hydrodynamics

Target Application

 Problems where fluid dynamics and 
capillary forces are important



Methodology: Conformal 

Decomposition Finite Element Method 

(CDFEM)
Simple Concept

 Use one or more level set fields to define materials or phases

 Decompose non-conformal elements into conformal ones

 Obtain solutions on conformal elements

Related Work

 Li et al. (2003) FEM on Cartesian Grid with Added Nodes

– Focus on Cartesian Grid.  Considered undesirable because it 

lost original mesh structure.

 Ilinca and Hetu (2010) Finite Element Immersed Boundary

– Focus on solid-fluid with Dirichlet BCs

Properties

 Supports wide variety of interfacial conditions (identical to 

boundary fitted mesh)

 Avoids manual generation of boundary fitted mesh

 Supports general topological evolution (subject to mesh 

resolution)

 Similar to finite element adaptivity

 Uses standard finite element assembly including data 

structures, interpolation, quadrature



XFEM - CDFEM Requirements 

Comparison for Thermal/Fluids

XFEM CDFEM

Volume Assembly Conformal subelement 

integration, specialized 

element loops to use 

modified integration rules

Standard Volume 

Integration

Surface Flux 

Assembly

Specialized volume element 

loops with specialized 

quadrature

Standard Surface 

Integration

Phase Specific 

DOFs and 

Equations

Different variables present at 

different nodes of the same 

block

Block has homogenous 

dofs/equations

Dynamic DOFS and 

Equations

Require reinitializing 

linear system

Require reinitializing 

linear system

Various BC types 

on Interface

Dirichlet BCs are 

research area

Standard Techniques 

available



XFEM – CDFEM Discretization 

Comparison

XFEM Approximation

CDFEM Approximation

 Identical IFF interfacial nodes in CDFEM are constrained 

to match XFEM values at nodal locations

 CDFEM space contains XFEM space

– CDFEM is no less accurate than XFEM (Li et al., 2003)

– XFEM can be recovered from CDFEM by adding 

constraints

+

+



Formulation: Melt Dynamics

Navier - Stokes

 Incompressible, Newtonian

 Galerkin, Backward Euler, Moving mesh term

 PSPG stabilization

 SUPG stabilization
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Formulation: Interface Dynamics

Level Set Equation

 Advection equation

 Galerkin, Backward Euler

 SUPG stabilization

 Periodic renormalization
– Compute nearest distance to interface
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Models: Liquid-Air Interface

Capillary Force

 Same model used in ALE simulations
– Jump in stress due to interfacial tension

– Laplace-Betrami implementation avoids second 
derivatives

Interface Stabilization

 Surface viscosity type stabilization
– Based on recent paper by Hysing
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CDFEM for Static Interfaces

 Level set function generated for desired geometry
– Multiple phases defined by multiple level set fields

 Non-conformal elements that intersect the level set 
undergo conformal decomposition

– Dynamic decomposition of blocks and sidesets

– Creation of sideset on interfaces for bc application

– Phase specific material properties, equations, 
source terms, etc.

 Other features
– Parallel

– Mixed Elements (LBB) Tris/Tets



CDFEM – Level Set Implementation in 

Two Dimensions

Conformal Decomposition Algorithm in Two Dimensions

 Isosurface of piecewise linear level set field on triangles generates C0 line 
segments

 Parent non-conformal triangular elements decomposed into conformal 
triangular elements

 Must choose how to decompose quadrilateral into triangles

– Babuška and Aziz: Large angles more detrimental to accuracy than small angles

– Diagonal chosen to cut largest angle



CDFEM – Level Set Implementation in 

Three Dimensions

Conformal Decomposition Algorithm in Three Dimensions

 Isosurface of piecewise linear level set field on tetrahedra generates C0 planar 
polygons

 Parent non-conformal tetrahedral elements decomposed into conformal 
tetrahedral elements – Intermediate wedges generated

– wedge + tetrahedra

– wedge + wedge
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CDFEM – Level Set Implementation in 

Three Dimensions – cont’d
 Decompose faces of wedges into triangles and then generate tetrahedra

– Desired strategy is again to choose the diagonals to cut largest angles

– Non-tetrahedralizable wedge called Schonhardt’s polyhedron may be 
generated

– Current strategy depends on face

– Interfacial faces – cut largest angle, Non-interfacial faces – select node with largest 
level set magnitude (prefers edges that are not aligned with interface)

Schonhardt’s Polyhedron –
Non-tetrahedralizable without Steiner points

Wedge amenable to 
generation of tetrahedra



Complications: Degenerate 

Decompositions

Strategy to Handle Degenerate or 
Nearly Degenerate Element 
Decompositions

 Standard approach: “Snap to Node” when 
edge intersection gets close to node

– Eliminates slivers and infinitesimal sub-
elements

– Can create interface segments that do 
not lie between sub-elements of both 
volumetric phases

– Huge number of degenerate cases must 
be handled

 Alternate approach: “Snap from Node” 
when edge intersection tries to get too 
close to node – Ilinca and Hetu (2010)

– Creates/retains many slivers and 
infinitesimal sub-elements

– Interface segments always lie between 
subelements of both volumetric phases

– No degenerate cases to handle



CDFEM Verification for Static 

Interfaces

Steady Potential Flow about a Sphere
 Embedded curved boundaries
 Dirichlet BC on outer surface, Natural 

BC on inner surface
 Optimal convergence rates for 

solution and gradient both on volume 
and boundaries

Steady, Viscous Flow about a Periodic Array of 
Spheres

 Embedded curved boundaries
 Dirichlet BC on sphere surface
 Accurate results right up to close packing limit
 Sum of nodal residuals provides 

accurate/convergent measure of drag force



 How do we handle the moving 
interface?

 What do we do when nodes change 
sign?

CDFEM for Moving Interfaces

Patch Test: Exact preservation of 
discontinuous gradient with 

constant advection



Approach for Dynamic Discretizations 

Due to Moving Interfaces: Dynamic 

Subdomains

 XFEM – Immersed Interface Approach
– Integration done over the 4 subdomains

– Constant advection – Backward Euler
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Approach for Dynamic Discretizations 

Due to Moving Interfaces: Mesh Motion

 ALE – CDFEM Approach
– Consider deforming domain

– Apply chain rule to time derivative

– Constant advection – Backward Euler

– Requires integration only over new decomposition

– Requires definition of mesh velocity, 
– Current algorithm: If edge cut previously, node moved along edge, otherwise 

find nearest node on the old interface
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CDFEM Verification for Dynamic 

Interfaces

Advection of Ridge Discontinuity
 Constant velocity left to right

 No diffusion, just advection and 
time derivative terms

 Exact solution obtained for entire 
simulation (machine precision)

Solidification of Quenched Bar
 Liquid quenched below melting 

point at time 0

 Exact solution for temperature 
profile and interface location

 Excellent agreement between 
simulation and exact solution 
(not fully quantified yet)



Level Set Approximation Space

 What space should be used for the Level Set 
field?

 Apparently not given much consideration in 
XFEM or immersed interface approaches

– Not proposed as a field to be enriched, 
instead standard piecewise linear (PWL) 
field is deemed sufficient

 Natural space in CDFEM is PWL on the 
subelements, not on the non-conformal 
parent element (SubPWL)

– These subelements, however, can describe 
non-linear (non-planar) interfaces on the 
parent element

 What are the consequences of the different 
spaces?

 How can CDFEM recover PWL on the parent 
element?

 Are there ramifications for the velocity field?



Benchmark: Level Set Advection

 Test: Pure advection of level set field
– Test 1: Advection of level set field 

on fixed mesh

– Test 2: Advection of level set field 
on CDFEM mesh (PWL 
decomposition with SubPWL level 
set field)

– Test 3: Advection of constrained 
level set field on CDFEM mesh 
(PWL decomposition with PWL 
level set field)

 Results: Both Test 1 and 3 show 
optimal convergence rate while Test 
2 does not

– Mismatch between decomposition 
space and level set space appears 
detrimental to stability/convergence 
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PWL Level Set Field: Consequences for 

Velocity Space

 Assume that because decomposition is PWL, then the 
Level Set Field should be PWL

 For new level set field to remain PWL:

– This requires the normal velocity gradient to be continuous 
across the interface!

– This is definitely not a requirement for satisfying the 
conservation equations

– Failing to satisfy this requirement can lead to a mismatch 
between the level set advection and the resulting interface 
location

– Such a mismatch can lead to spurious currents (non-zero 
velocity that yield no interface motion)

 Possible solution – constrain entire velocity to be PWL
– Equivalent to not enriching velocity gradient in XFEM –

Found to be necessary by Fries and Zilian
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Capillary Hydrodynamics: 

Consequences of Velocity Space

 Tests: Static bubble and rising bubble
– Test show sub-optimal, in fact, unstable behaviour for 

unconstrained velocity space

– Constrained velocity space is overly diffusive, unable to sharply 
capture the physically discontinuous velocity gradient

– Constraint is excessive in that it removes discontinuity in both 
the normal and tangential gradient in velocity



Summary

 CDFEM is Accurate for Static Interface Problems

– Multiple verification tests performed

– Method  expected to be at least as accurate as XFEM

 CDFEM is Robust for Static/Dynamic Interface Problems

– Handles arbitrary interface topology in 2d and 3d

 CDFEM usage of Moving Mesh Time Derivative Appears Optimal

– Less work than decomposition/integration over intersections of old and new 

subdomains

– Exactly satifies advection patch test and provides optimal convergence rates 

for pure advection

 XFEM and CDFEM decompositions normally require piecewise 

linear level set fields

– Possible that normal velocity inherits this limitation

– Possible reason that enriched velocity gradient formulations have 

shown less than desirable stability/convergence

– Constrained CDFEM simulations show desired stability and 

convergence


