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ABSTRACT

There has been much recent work on computing optimal
security strategies in Stackelberg (leader-follower) models
of security. Techniques to date, however, generally fail to
explicitly account for interdependence between the targets
to be secured, which is of vital importance in a variety of
domains, including cyber, supply chain, and critical infras-
tructure security. We introduce a novel framework for com-
puting optimal randomized security policies in networked
domains which extends previous approaches in two ways.
First, we extend previous linear programming techniques
for Stackelberg security games to incorporate benefits and
costs of arbitrary security configurations on individual as-
sets. Second, we offer a principled model of failure cascades
that allows us to capture both the direct and indirect value
of assets. We use our framework to analyze four models, two
based on random graph generation models, a simple model
of interdependence between critical infrastructure and key
resource sectors, and a model of the Fedwire interbank pay-
ment network.
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Game theoretic approaches to security have received much
attention in recent years. There have been numerous at-
tempts to distill various aspects of the problem into a model
that could then be solved in closed form, particularly ac-
counting for interdependencies of security decisions [14, 7,
17, 20]. Numerous others, however, offer techniques based
on mathematical programming to solve actual instances of
security problems. Approaches to network interdiction [4,
23], for example, offer (usually) an integer programming for-
mulation solving for an location of sensors that optimally
interdict traffic (such as drug traffic) through a network.

Our point of departure is a different line of work that
develops linear and integer programming methods for opti-
mal randomized allocation of security resources among pos-
sible attack targets. In this work, the assumption is made
that the defender is able to commit to a randomized policy
which is subsequently observed by the attacker who opti-
mally responds to it. Initial work on the subject offered an
approach relying on multiple linear programs to compute
such an optimal commitment strategy in general two-player
games [3]. Follow-up work developed single linear and in-
teger programming formulations for Bayesian and complete
information settings [19, 2] and attempted to exploit the
special structure of security scenarios to build faster, more
scalable algorithms [12, 8, 13], with some finding use in ac-
tual security deployments [10]. Within this stream of work,
there are also approaches for security in network settings,
but the semantics of the networks is rather different from
ours: the defender aims to thwart an attacker traversing a
network towards a target [22, 9].

2. STACKELBERG SECURITY GAMES

A Stackelberg security game consists of two players, the
leader (defender) and the follower (attacker), and a set of
possible targets. The leader can decide upon a randomized
policy of defending the targets, possibly with limited defense
resources. The follower (attacker) is assumed to observe the
randomized policy of the leader, but not the realized defense
actions. Upon observing the leader’s strategy, the follower
chooses a target so as to maximize its expected utility.

In past work, Stackelberg security game formulations fo-
cused on defense policies that were costless, but resource
bounded. Specifically, it had been assumed that the de-
fender has K fixed resources available with which to cover
(subsets of ) targets. Additionally, security decisions amounted
to covering a set of targets, or not. While in numerous set-
tings to which such work has been applied (e.g., airport secu-
rity, federal air marshall scheduling) this formulation is very



reasonable, in other settings one may choose among many
security configurations for each valued asset, and, addition-
ally, security resources are only available at some cost.! For
example, in cybersecurity, protecting computing nodes could
involve setting anti-virus and/or firewall configuration set-
tings, with stronger settings carrying a benefit of better pro-
tection, but at a cost of added inconvenience, lost produc-
tivity, as well as possible licensing costs. Indeed, costs on
resources may usefully take place of resource constraints,
since such constraints are often not hard, but rather chan-
nel an implicit cost of adding further resources.

To formalize, suppose that the defender can choose from a
finite set O of security configurations for each target t € T,
with |T'| = n. A configuration o € O for target ¢ € T' incurs
a cost ¢,,; to the defender. If the attacker happens to attack
t while configuration o is in place, the expected value to the
defender is denoted by U, , while the attacker’s value is Vj, ;.
A key assumption in Stackelberg security games is that the
targets are completely independent: that is, a joint defender
and attacker decision concerning one target has no impact on
the values of others, and total defender and attacker utilities
are additive over all targets. We revisit this assumption
below when we turn to networked (interdependent) settings.
We denote by go,+ the probability that the defender chooses o
at target ¢, while a; denotes the probability that the attacker
attacks target t.

3. COMPUTING OPTIMAL RANDOMIZED
SECURITY CONFIGURATIONS

Previous formulations of Stackelberg security games in-
volved a fixed collection of defender resources, and in most
cases a binary decision to be made for each target: to cover
it, or not. To adapt these to our domains of interest, we first
modify the well-known multiple linear program formulation
to incorporate an arbitrary set of security configurations to-
gether with their corresponding costs of deployment. In the
multiple-LP formulation, each linear program solves for an
optimal randomized defense strategy for a fixed attacker tar-
get t, with the constraint that ¢ is an optimal choice for the
attacker. The defender then chooses the best solution from
all feasible LPs as his optimal randomized defense configura-
tion. At this point we make a crucial assumption that allows
our approach to scale to tackle realistic problem instances:
the utilities of both players only depend on which target
was chosen by the attacker and the security configuration at
that target. This assumption, which avoids an exponential
blow-up of the defender pure strategy space, parallels the in-
dependence assumption made by Kiekintveld et al. [12]. The

!Security configurations may be firewall or anti-virus set-
tings, or could even serve the purpose of introducing non-
linear costs of resources spent on security. For example, we
can introduce several levels of defense intensity, with higher
levels having a higher marginal cost (i.e., having a convex
cost function).

resulting formulation as n LPs is shown in Equations 1-4.
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The intuition behind this is that in an optimal solution, the
attacker must (weakly) prefer to attack some target, and
consequently, one of these LPs must correspond to an op-
timal defense policy. (We note that a MILP ERASER for-
mulation [12] can be modified similarly to allow for multiple
defense configurations and a benefits-costs optimization.?)

3.1 Single Linear Program Formulation

Starting with the multiple-LP formulation above we con-
struct a single LP that aggregates all of these (this formu-
lation is different from a single-LP version by Conitzer and
Korzhyk [2] in that it does not require any post processing
to derive the optimal defense strategy). We cannot do so
immediately, however, because some of the n LPs may ac-
tually be infeasible: some targets may not be optimal for
the attacker for any defense policy. Consequently, we must
prune out all such targets in order to ensure that the com-
bined LP is feasible. Formally, it suffices to check, for each
target ¢ that

max V, ; > max min Vo ¢, (5)
that is, that { is not strictly dominated for the attacker.
Let T' C T be the set of targets for which Equation 5 holds.

The aggregate single-LP formulation is then shown in Equa-
tions 6-9.
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Notice that we can easily incorporate additional linear
constraints in any of these formulations. For example, it is
often useful to add a budget constraint of the form:

t
vf,t ZCO,tQO,t S B.
o

4. INCORPORATING NETWORK STRUC-
TURE

2An important computational advantage of using a cost-
benefits formulation here is that we do not need to concern
ourselves with enforcing the constraint on a fixed number
of available resources during actual sampling, a non-trivial
problem in its own right.




Thus far, a key assumption has been that the utility of the
defender and the attacker for each target depends only on
the defense configuration for that target, as well as whether
it is attacked or not. In many domains, such as cybersecu-
rity and supply chain security, key assets are fundamentally
interdependent, with an attack on one target having poten-
tial consequences for others. In this section, we show how
to transform certain important classes of problems with in-
terdependent assets into a formulation in which targets be-
come effectively independent, for the purposes of our solu-
tion techniques.

Below we focus on the defender’s utilities; attacker is
treated identically. Let w; be an intrinsic worth of a target
to the defender, that is, how much loss the defender would
suffer if this target were to be compromised with no other
target affected (i.e., not accounting for indirect effects). In
doing so, we assume that these worths are independent for
different targets. Let s = {o01,...,0,} be the security con-
figuration on all nodes. Assuming that the utility function is
additive in target-specific worths and the attacker can only
attack a single target, we can write it as

Ui(s) = E[Z wy 1(t" affected | s,t)] = Zwyzsytr(t),
¢/ ¢/

where 1(-) is an indicator function and z; ;- (¢) is the marginal
probability that target t’ is affected when the attacker at-
tacks target t. From this expression, it is apparent that
in general, U;(s) depends on defense configurations at all
targets, creating an intractable large space of configura-
tions over which the defender has to reason. We now make
the crucial assumption that enables fast computation of de-
fender policies by recovering inter-target independence.

ASSUMPTION 1. For allt and t', 254/ (t) = 2o,/ (t)-

In words, the probability that a target ¢’ is affected when
t is attacked only depends on the security configuration at
the attacked target t. Below, we use a shorthand o instead
of o where t is clear from context.

A way to interpret our assumption is that once some tar-
get is compromised, the fault may spread to other assets
in spite of good protection policies. This assumption was
operational in other work on interdependent security [14],
where a justification is through a story about airline bag-
gage screening: baggage that is transferred between airlines
is rarely thoroughly screened, perhaps due to the expense.
Thus, even while an airline may have very strong screen-
ing policies, it is poorly protected from luggage entering its
planes via transfers. Cybersecurity has similar shortcom-
ings: defense is often focused on external threats, with little
attention paid to threats coming from computers internal to
the network. Thus, once a computer on a network is compro-
mised, the attacker may find it much easier to compromise
others on the same network. The problem is exacerbated by
the use of common operating environments, since once an
exploit is found, it can often be reused to compromise other
computing resources on a common network.

Under the above assumption, we can write the defender
utility when ¢ is attacked under security configuration o as,

Uo,t = Zo,t(t)wt + Z Zo,t/ (t)wt/.
t/ £t

By a similar argument and an analogous assumption for the
attacker’s utility, we thereby recover target independence

required by the linear programming formulations above.

4.1 Cascading Failures Model

In general, one may use an arbitrary model to compute
or estimate U,; above. Indeed, often simulation tools are
available to perform the analysis of global consequences of
attacks on particular pieces of the infrastructure [6]. Never-
theless, we offer a specific model of interdependence between
targets that is simple, natural, and applies across a wide va-
riety of settings.

Suppose that dependencies between targets are represented
by a graph (T, E'), with T the set of targets (nodes) as above,
and E the set of edges (¢,t'), where an edge from t to ¢’ (or
an undirected edge between them) means that target t' de-
pends on target ¢ (and, thus, a successful attack on ¢ may
have impact on t'). Each target has associated with it a
worth, w; as above, although in this context this worth is
incurred only if ¢ is affected (compromised, affected by a flaw
that spreads from one of its dependencies, etc). The security
configuration determines the probability z,.(t) that target
t is compromised (affected) if the attacker attacks it directly
and the defense configuration is 0. We model the interde-
pendencies between the nodes as independent cascade con-
tagion, which has previously been used primarily to model
diffusion of product adoption and infectious disease [11, 5].3
The contagion proceeds starting at an attacked node t, af-
fecting its network neighbors ¢’ each with probability p; s .
The contagion can only occur once along any network edge,
and once a node is affected, it stays affected through the dif-
fusion process. The simple way to conceive of this is to start
with the network (7, E) and then remove each edge (,t')
with probability (1—p; ). The entire connected component
of an attacked node is then deemed affected.

4.2 Computing Expected Utilities

Given the independent cascade model of interdependen-
cies between targets, we must compute expected utilities,
Uo,+ and V¢, of the defender and the attacker respectively.
In general, we can do so by simulating cascades starting at
every node t, with expected utilities estimated as sample
average utilities over K simulated cascades (expectation in
this case is with respect to random realizations of attack
success for specific targets as well as edges that become a
part of the failure contagion. In the special case when the
network is a tree, however, we can compute these exactly.
A naive algorithm can do it in linear time for a given target
t, yielding quadratic time in total (since we must do this for
all targets). In fact, we can do this in linear time for all
targets, as the following theorem asserts.

THEOREM 1. If (T, E) is an undirected tree we can cal-
culate the expected utilities at all targets in O(n) time.

The proof of this result is in the appendix.

5. EXAMPLE: A SIMPLE SUPPLY CHAIN

In this section we illustrate the tools introduced above
with a simple example. Consider a seven-node supply chain
(directed acyclic graph) shown in Figure 1. We suppose
that the entire supply chain (or at least the relevant security
decisions) is controlled by a single firm which is primarily

3 A similar model was also used by Mounzer et al. [15] in the
context of risk modeling and management in organizations.
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Figure 1: A simple automotive supply chain exam-
ple.
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Figure 2: Randomized defense configurations for the
simple supply chain example under two defense cost
scenarios.

Expected Utility

concerned with manufacturing two types of cars, one more
profitable than the other. The actual components that ul-
timately comprise the cars are not intrinsically valuable to
the manufacturer (or are valued so low relative to the final
product as to make them effectively unimportant in this de-
cision). All parts of the supply chain may be inspected at
some cost ¢, or not (in which case no cost is incurred).

The first step in our framework is to compute (or esti-
mate) the expected utility for each node in the supply chain.
To do this, we first specify the probability that an attacked
node is affected (in this case, becomes faulty), zo+(t). We
let zo,:(t) = 1 when node ¢ is not inspected and z,,:(t) = 0
when it is. Next, we must specify the contagion probabil-
ities for each edge. We use p; s+ = 0.5 for all edges here.
The results are color coded in Figure 2 (left): the darker
colors correspond to more valuable nodes. Note that while
intrinsic worth is only ascribed to the final products, all
components carry some value, due to their indirect impact
on the final product (for example, a faulty part will, with
some probability, make the component which uses it faulty
as well). Supposing now that the game is zero-sum, the ex-
pected utilities of the attacker are completely determined by
the defender’s utilities, and we can use these as an input into
the linear programs above. We show the results for two dif-
ferent inspection costs, chign = 0.1428 and o, = 0.0179 in
Figure 2. The higher cost setting (Figure 2, middle) yields
a security configuration in which five of the seven nodes in-
cur some probability of inspection, with the heavier colors
corresponding to high inspection probability. The low-cost
setting (Figure 2, right) yields a solution in which every node
is defended with probability 1.

6. EXPERIMENTS IN INTERDEPENDENT
SECURITY ANALYSIS

In this section we apply our framework to several net-
worked domains. First, we consider networks generated from

two major generative random graph models: Erdos-Renyi
(ER) and Preferential Attachment (PA) [16]. In the ER
model every directed link is made with a specified and fixed
probability p. The PA which adds nodes in a fixed sequence,
starting from an arbitrary seed graph with at least two ver-
tices. Each node i is attached to m others stochastically
(unless 7 < m, in which case it is connected to all preceding
nodes), with probability of connecting to a node j propor-
tional to the degree of j, d;j. In a generalized version of
this model that we consider below, connection probabilities
are (dj;)", such that when p = 0 the degree distribution is
relatively homogeneous, just as in ER, p = 1 recovers the
“standard” PA model, and large values of p correspond to
highly inhomogeneous degree distributions. Throughout, we
use p = 1 unless otherwise specified.

In addition, we explore three networks derived from real
security settings: one with 18 nodes that models dependen-
cies between critical infrastructure and key resource sectors
(CIKR), as inferred from the DHS and FEMA websites, the
second with 66 nodes that captures payments between banks
in the core of the Fedwire network [21], and the third a snap-
shot of the autonomous systems (AS) network using Oregon
routeviews [18] containing 6474 targets and 13233 edges.

For the randomly generated networks, all data presented is
averaged over 100 graph samples. Since we generate graphs
that may include undirected cycles, we obtain expected utili-
ties for all nodes using 10,000 simulated cascades. (We later
revisit this issue and show that this is more than a suffi-
cient number for problems of this scale). Intrinsic worths
wy are generated uniformly randomly. Cascade probabil-
ities ps,r were set to 0.5 unless otherwise specified. For
the CIKR network, each node was somewhat arbitrarily as-
signed a low, medium, and high worth of 0.2, 0.5, and 1,
respectively, based on perceived importance (for example,
the energy sector was assigned a high worth, while the na-
tional monuments and icons sector a low worth). Each edge
was categorized based on the importance of the dependency
(as gleaned from the DHS and FEMA websites) as “highly”
and “moderately” significant, with cascade probabilities of
0.5 and 0.1 respectively. For the Fedwire network, all nodes
were assigned an equal worth of 0.5, and cascade proba-
bilities were discretely chosen between 0.05 and 0.5 in 0.05
increments depending on the weight of the corresponding
edges shown in [21]. Finally, for the AS network, we gen-
erated values for each node uniformly randomly on a unit
interval, and our experiments give an average of 10 such as-
signments. Cascade probabilities p; ; were fixed at 0.5 for
all edges.

We restrict the defender the defender to two security con-
figurations at every target, one with a cost of 0 which stops
attacks 0% of the time and one with a cost of ¢ which pre-
vents attacks 100% of the time, and, additionally, that we
have a zero-sum game between the defender and attacker.

6.1 Evaluation of Heuristics on the Autonomous

Systems Network

Besides offering a framework for computing optimal ran-
domized security strategies on networks, we also proposed
several heuristics for identifying nodes to secure. In this sec-
tion, our purpose is to evaluate the quality of these heuris-
tics, both relative to each other, and relative to the optimal
solution. The hope is that if a particular heuristic is highly
effective, it may allow our general approach to scale to net-



works much larger than those we can currently handle in
a reasonable amount of time. A secondary purpose of this
section is to illustrate that our framework already scales to
a graph with thousands of nodes. We therefore perform our
evaluation on a real instance (snapshot) of an autonomous
systems graph (AS), which is a much larger graph than those
used in the remainder of the experiments section. Indeed, it
took us under 1 hour to solve optimally on this graph for a
fixed setting of node values; the results we report are aver-
ages over 10 such instances. To facilitate a fair comparison,
we first obtained an optimal solution for a given instance
and fixed the corresponding total cost C. We then applied
the proposed greedy heuristics iteratively until we exhausted
the cost budget C.

As we can see fro Figure 3, most of the heuristics do rather
poorly.* For example, the widely used heuristic which ranks
nodes in order of their degrees is much worse than optimal
when defense costs are sufficiently high, even in its fractional
instantiation. The reason is simply that security decision is
driven both by connectivity and intrinsic valuations, and
the latter is not in any way captured such a heuristic. In-
terestingly, a non-fractional greedy heuristic which allocates
security to nodes in order of their expected utility does just
as badly as the degree-based heuristic. In contrast, a frac-
tional greedy heuristic is remarkably efficacious: it is only
about 4% worse than optimal when defense costs are high.

Performance of various heuristics on a 6474 AS graph

5000
Optimal solution —+—
Greedy - follower utility --—»---t
4000 - Fractional greedy - follower utility -
) Greedy - target degree =
3 Fractional greedy - target degree ---#-+
B 3000 - ]
3]
5]
Q.
X
o 2000 f ]
T
]
[
1000 | ]
0
100 1000 10000

Defense cost per node

Figure 3: Expected total loss under various heuris-
tics.

6.2 The Impact of Marginal Defense Cost

Our first analysis endeavor is to study the impact of marginal

defense cost ¢ on defender expected losses, his total costs,
and the sum of these (i.e., negative expected utility). The
results for ER and BA (both with 100 nodes and average de-
gree of 2), as well as CIKR and Fedwire networks are shown
in Figure 4. All the plots feature a clear pattern: expected
loss and (negative) utility are monotonically increasing, as
expected, while total costs start at zero, initially rise, and ul-
timately fall (back to zero in 3 of the 4 cases). It may at first
be surprising that total costs eventually fall even as marginal
costs continue to decrease, but this clearly must be the case:

4All approaches are nearly identical if defense costs are low,
since then defense budget suffices to defend all important
nodes. Interesting cases arise when there is a meaningful
tradeoff to be made in optimizing defense configurations.

when c is high enough, the defender will not wish to invest
in security at all, and total costs will be zero. What is much
more suprising is the presence of a dual-peak in Preferential
Attachment and Fedwire networks. Both these networks
share the property that there is a non-negligible fraction of
nodes with a very high connectivity [16, 21]. When the ini-
tial peak is reached, the network is fully defended, and as
marginal costs rise further, the defender begins to reduce the
defense resources expected on less important targets. At a
certain point, only the most connected targets are protected,
and since these are so vital to protect, total costs begin in-
creasing again. After the second peak is reached, c is finally
large enough to discourage the defender from fully protect-
ing even the most important targets, and the subsequent fall
of total costs is no longer reversed.

6.3 Resilience to Targeted Attacks: Impact of
Network Structure

One of the important streams in the broad network science
literature is the question of relative resilience of different
network topologies to failures, random or targeted. A key
results, replicated in a number of contexts, is that network
topology is a vital factor in determining resilience [1, 16].
Of particular interest to us is the observation that scale-
free networks such as PA exhibit poor tolerance to targeted
attacks as compared to ER, which is precisely the context
that we consider.

In Figure 5 we show the defender’s utility for three differ-
ent network topologies, PA, ER, and Fedwire as a function of
cost c. Remarkably, there is essentially no difference between
PA and ER (and not much between these and Fedwire) until
c is quite high, at which point they begin to diverge. This
seems to contradict essentially all the previous findings in
that network topology seems to play little role in resilience
in our case! A superficial difference here is that we consider
a cascading failure model, where most of the previous work
on the subject focused on diminished connectivity due to
attacks. We contend that the most important distinction,
however, is that previous work on the subject did not ac-
count for a simple observation that most important targets
are also most heavily defended; indeed, there was no no-
tion of endogenous defense at all. In scale-free graphs, there
are well connected nodes failure of which has global conse-
quences. These are the nodes which are most important,
and are heavily defended in optimal decisions prescribed by
our framework. Once the defense decision becomes endoge-
nous, differences in network topology disappear. Naturally,
once c is high enough, defense of important targets weak-
ens, and eventually we recover the standard result: for high
¢, Preferential Attachment is considerably more vulnerable
than Erdos-Renyi.

To investigate the impact of network topology on resilience
further, we consider the generalized PA model in which we
systematically vary the homogeneity of degree distribution
by way of the parameter pu. The results are shown in Fig-
ure 6. In this graph, we do observe clear variation in re-
silience as a function of network topology, but the opera-
tional factor in this variation is homogeneity in the distri-
bution of expected utilities, rather than degrees: increasing
homogeneity of the utility distribution lowers network re-
silience. This seems precisely the opposite of the standard
results in network resilience, but the two are in fact closely
related, as we now demonstrate. Superficially, the trend in
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Figure 5: Expected total loss:
different network structures.

comparison across

the figure seems to follow the common intuition in the re-
silience literature: as the degree distribution becomes more
inhomogeneous (more star-like), it becomes more difficult to
defend. Observe, however, that ER is actually more difficult
to defend than PA with 4 = 0. The lone difference of the
latter from ER is the fact that nodes that enter earlier are
more connected and, therefore, the PA variant should actu-
ally be more inhomogeneous than ER! The answer is that
random connectivity combined with inhomogeneity actually
makes the distribution of wutilities less homogeneous, and, as
a result, fewer nodes on which defense can focus. On the
other hand, as the graph becomes more star-like, the utili-
ties of all nodes become quite similar; in the limiting case,
all nodes are only two hops apart, and attacking any one of
them yields a loss of many as a result of cascades.

There is another aspect of network topology that has an
important impact on resilience: network density. Figure 7
shows a plot of an Erdos-Renyi network with the proba-
bility of an edge varying between 0.0025 to 0.08 (average
degree between .25 and 8) and cost ¢ fixed at 0.04. Clearly,
expected utility and loss of the defender are increasing in
density, but it is rather surprising to observe how sharply
they jump once average degree exceeds 1 (the ER network
threshold for a large connected component); in any case,
network density has an unmistakable impact. The reason is
intuitive: increased density means more paths between tar-
gets, and, consequently, greater likelihood of large cascades
in the event any target is compromised. Total cost initially

Effect of changing the attachment coefficient in a nonlinear way
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Figure 6: Expected defender disutility in the gen-
eralized PA model as we vary p (keeping average
degree fixed at 2). ER is also shown for comparison.

increases in response to increased density, in part to com-
pensate for the increased vulnerability to attacks, but even-
tually falls, since it is too expensive to protect everything,
and anything short of that seems largely ineffective.
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Figure 7: Expected loss, cost, and their sum in 100-
node Erdos-Renyi networks as a function of network
density (equivalently, expected degree).

6.4 Sampling Efficiency



Another question that we raised earlier is how many sim-
ulation samples are sufficient to have confidence in the re-
sults? In our experiments we used 10000, which seems large,
but whether it’s enough for the networks we consider is un-
clear. Figure 8 offers strong evidence that 10000 is more
than enough samples; indeed, it seems that 100 would suf-
fice in networks of comparable size.

100 node Erdos-Renyi graph with E[degree] = 2 and ¢ = .04
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Figure 8: Expected loss, cost, and the sum under
incomplete information about network structure.

7. EXTENSIONS

In this section we contemplate several extensions of our
basic framework. The first introduces a possibility that with
some probability, known to the defender, there is no attacker
and failure happens “exogenously”, according to some distri-
bution over all targets (also known to the defender). The
second extends our framework to allow an attacker to have
multiple capabilities among which one is chosen for an at-
tack. Our third extension allows us to capture, in a limited
way, the possibility of an attacker simultaneously compro-
mising more than one target as a part of the initial attack.
We present our extensions in the single-LP formulation, not-
ing that they are just as easy to apply to the other formu-
lations.

7.1 Attacker vs. Nature

Introducing nature, or exogenous failures, into the picture
is the simplest extension to make. Let r be the probability
that target failures happen as a result of an intelligent attack
and 1 —7 be the probability that they happen according to a
known distribution g; over targets. We need only to change
the objective of the linear program to capture this to be

maxz |:7“ <Z Uo,gqi,,§> +(1—-r) <Z gtUo,th.,t>
t o t,o
=30 conton
t o

7.2 Multiple Attacker Capabilities

Suppose that the attacker has a set of capabilities K; that
can be used to attack a target t. Incorporating this into
our linear programming formulation is straightforward, if
somewhat messy. In essence, we extend the set of targets

to be a cross product between targets and capabilities, but
must, of course, take care not to assign defense resources to
capabilities, but to targets only. To keep things simpler, we
only alter the original formulation of the problem, keeping
in mind that it is direct to combine all our extensions. The
modified objective becomes

Z Z ik ik
max ( onf,kqo’f — E E co,tqo’t> .
ik o

o t

The constraints on attacker’s expected utility are also mod-
ified:

b B
ik emy 2 Vorkdor <DV, iidy;

7.3 Attacking Multiple Targets

Allowing attackers to attack multiple targets is known to
be NP-Hard in general—indeed, the attacker’s decision alone
is NP-Hard in such a setting [11]. However, there is a lim-
ited extent to which we can incorporate this possibility into
our framework. Suppose that there are two kinds of nodes,
a set A of attacks and a set T' of targets, and suppose that
an attacker can only activate a node in A, corresponding
to a particular attack method he can use (e.g., a denial-of-
service attack). The semantics of defense strategies in this
setting that preserve the crucial assumption of independence
we have made is that we can only defend attack nodes, but
not targets. However, this redefined model allows an at-
tacker to direct attack multiple targets, since there can be
multiple edges between a node in A and set T". This graph-
ical structure is of great value if the attacker has a limited
number of possible subsets of all targets he can aspire to at-
tack directly, and nothing is gained if the attacker can attack
any possible subset of targets.

8. CONCLUSION

We present a framework for computing optimal random-
ized security policies in network domains, extending previ-
ous linear programming approaches to Stackelberg security
games in two ways. First, we construct a single linear pro-
gramming formulation which incorporates costs of arbitrary
security configurations and may be extended to enforce bud-
get constraints. Second, we demonstrate how to transform
a general setting with interdependent assets into a security
game with independent targets, allowing us to leverage the
compact linear programming formulation for security games.
We apply our framework to study four models of interdepen-
dent security. Two are based on standard generative models
of random graphs, and two others use real networks rep-
resenting interdependent assets. We show that there is a
surprising bi-modal behavior of expected utility in preferen-
tial attachment networks as defense costs increase, that such
networks lead to greater expected losses than Erdos-Renyi
networks when defense costs are high. We also demonstrate
that increased network density has substantial deleterious
effect on expected losses of targeted attacks and that, as
a result, highly interdependent networks such as that rep-
resenting critical infrastructure sector dependence are ex-
tremely difficult to defend. Finally, we show that having
some information, even very limited, about the true net-
work structure can be of substantial value in guiding high
quality defense decisions.
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APPENDIX
A. PROOFS
A.1 Proof of Theorem 1

In this proof we use a shorthand z,,; for Zo,t(t). Let us define
the neighbors of a target t as Nt. By definition, the expected
utility of a given node t (Us,,¢) is the direct utility at that node
(zoytwt) plus the expected utility due to the cascading failure.
The expected utility due to cascading failure is

Zot Z wy p(failure(t')|t)
£t

where p(failure(t’)|t) is the probability a node t’' fails if node
t fails. Since this is a tree, there is only one path between any
pair of nodes, which means we can express p(failure(t’)|t) as the
product of probabilities of the edges on the path between ¢t and
t’. Next, let us consider the set of paths generated by each pair
of nodes in the tree. If we organize these paths by the edges they
contain (and use linearity of expectation), we can express the
expected utility of the contagion spreading across an edge (t,t'),
E[U ], as:

ElU)] = per | wer + Z
t1EN,, ¢ F#t

E[U(t/,t”)] : (10)

Thus, we can reason that for each node t:

Uo,t = Zo,tUty
where
Ur=wi+ Y E[Ugu) (11)
t'EN

Now let us describe a two-pass algorithm for calculating Uy for
all t. First, choose an arbitrary node to be the root of the tree. In
the first pass, we calculate the expected loss due to each edge from
parent to child from the bottom of the tree upward. In the second
pass, we calculate the expected loss on each edge from child to
parent from the top of the tree downward. We can model this as
a message passing algorithm, where calculating E[U(tyt/)] is done
by passing a message from ¢’ to t. We can see by Equation 10
that the necessary inputs to calculate E[U ;)] are the messages
from Ny \ t to t/. We will now show that at the time that each
of these messages is generated, all of the necessary inputs will be
available.

Consider the edges between a given node t and its neighbors.
Unless t is the root, one of these edges will be between ¢ and its
parent P, and the rest (possibly 0 in the case where ¢ is a leaf
node) will be between ¢ and its children. Since in the first pass
we are passing messages from child to parent and a node has only
one parent, we will have received messages from Nt \ Py when we
generate the message from ¢ to P.

For the second pass, when we pass information to a child of ¢,
Ct, we will have received messages from N¢, thus we again have
the necessary information to generate the message from ¢ to Cj.



Finally, once a node has received messages from all of its neigh-
bors we can easily calculate the expected loss at each node by
Equation 11. However, to achieve a runtime of O(n), we need
to be slightly more clever in how we store these values. By
combining Equations 10 and 11 we can reason that E[U /)] =
Pe,e(Uy — E[Ugr ]). This allows us to give an equivalent defi-
nition of Uy:

U = wt + Z pe,t (U — E[Ugr )])- (12)
teEN,

Now, consider the same two-pass algorithm as before, but rather
than storing the expected loss for every edge, we merely store a
running total of the expected loss at each node. We argue that by
the same reasoning as before that the necessary calculations will
have been performed before we need them as inputs. However, we
still need to show that we can recover the correct value out of the
values stored at the two nodes. When we calculate E[U(p, )] in
the first pass, the value stored at C' will be (Uc — E[U(c,p)l),
since we have not yet updated C' with E[Uc p)]. However,
when we reach this edge on the downward pass to to calculate
E[U(c,pyl, P will have Up stored. Since the value stored at C
is still (Uc — E[U(c,p)l), we can easily calculate E[Uc py] =
pc,p(Up — E[Up,cy]) = pc,p(Up — pp,c(Uc — E[U(c,p)])) and
update C.

Since we visit each edge twice, and perform a constant amount
of work each time, we can bound the runtime by O(|E|). Since
in a tree |T| — 1 = |E|, we can also bound the runtime by O(n).



