SAND2011-3910C

Some Recent Tools and a BDDC
Algorithm for 3D Problems in H(curl)

Clark R. Dohrmann! and Olof B. Widlund?

Abstract We present some recent domain decomposition tools and a BDDC
algorithm for 3D problems in the space H (curl; §2). Of primary interest is a
face decomposition lemma which allows us to obtain improved estimates for
a BDDC algorithm under less restrictive assumptions than have appeared
previously in the literature. Numerical results are also presented to confirm
the theory and to provide additional insights.

1 Introduction

We investigate a BDDC algorithm for three-dimensional (3D) problems in
the space Hg(curl; £2). The subject problem is to obtain edge finite element
approximations of the variational problem: Find uw € Hy(curl; £2) such that

CLQ(’U,,'U) = (.fa U)Q Vv € HO(Curl; 0)7

where

apn(u,v) ::/Q[(avxu-va)—i—(ﬁun))}dx, (f,v)Q:/Qf-'vdac.
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The norm of uw € H(curl;{2), for a domain with diameter 1, is given by
ao(uw,u)/? with @ = 1 and § = 1; the elements of Hg(curl) have vanishing
tangential components on 9f2. We could equally well consider cases where
this boundary condition is imposed only on one or several subdomain faces
which form part of 9f2. We will assume that @ > 0 and 3 > 0 are constant
in each of the subdomains §2¢,...,2y. Our results could be presented in a
form which accommodates properties which are not constant or isotropic in
each subdomain, but we avoid this generalization for purposes of clarity.

In the pioneering work of Toselli [2006], two different cases were analyzed
for FETI-DP algorithms:
Case 1:

a=a for i=1,...,N

The condition number bound reported for the preconditioned operator is
k< max(1 + H26:/a) (1 + log(H/h))*, (1)
3

where H/h := max; H;/h;.
Case 2:
Gi=p for i=1,...,N

for which the reported condition number bound is
) < max(1+ H7B/a;)(1 +log(H/h))". (2)

We address the following basic questions regarding Toselli [2006] in this study.

1. Is is possible to remove the assumption of «; = « or §; = 8 for all i?

2. Is it possible to remove the factor of H?(3;/c; from the estimates?

3. Is is possible to reduce the logarithmic factor from four powers to two
powers as is typical of other iterative substructuring algorithms?

4. Do FETI-DP or BDDC algorithms for 3D H(curl) problems have certain
complications not present for problems with just a single parameter?

We find in the following sections that the answers are yes to all four questions.
However, due to page limitations, we only consider here the relatively rich
coarse space of Algorithm C of Toselli [2006]. We remark that the analysis
of 3D H(curl) problems with material property jumps between subdomains
is quite limited in the literature. A comprehensive treatment of problems
in 2D can be found in Dohrmann and Widlund [2010]. A different iterative
substructuring algorithm for 3D problems is given in Hu and Zou [2003], but
the authors were unable to conclude whether their condition number bound
was independent of material property jumps.
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2 Tools

We assume that (2 is decomposed into N non-overlapping subdomains,
21,...,82y, each the union of elements of the triangulation of 2. We de-
note by H; the diameter of {2;. The interface of the domain decomposition is

given by
N
ri= <U arzi> \0R2,

i=1
and the contribution to I" from 92; by I := 042;\0f2. These sets are unions
of subdomain faces, edges, and vertices. For simplicity, we assume that each
subdomain is a shape-regular and convex tetrahedron or hexahedron with
planar faces.

We assume a shape-regular triangulation 7, of each (2; with nodes match-
ing across the interfaces. The smallest element diameter of 7}, is denoted by
h;. Associated with the triangulation 7j, are the two finite element spaces
Wg};;d C H(grad, £2;) and W‘ﬁfﬂ C H(curl, §2;) based on continuous, piecewise
linear, tetrahedral nodal elements and linear, tetrahedral edge (Nédeléc) ele-
ments, respectively. We could equally well develop our algorithms and theory
for low order hexahedral elements.

The energy of a vector function u € Wﬁjﬂ for subdomain (2; is defined as

Ei(u) == ;(V xu,V xu)g, + Bi(u,u)q,, (3)

where o; and §; are assumed constant in (2;.

Let N, € Wchuirl and t. denote the finite element shape function and unit
tangent vector, respectively, for an edge e of 7;,. We assume that N, is
scaled such that N, -t. = 1 along e. The edge finite element interpolant of a
sufficiently smooth vector function w € H(curl, £2;) is then defined as

mh(u) = Y uNe, ue:= (1/|e|)/u-teds, )

€€Mﬁi €

where Mg is the set of edges of 7j,,, and |e| is the length of e. We will also
make use of other sets of subdomain edges. The sets Myq,, Mg, Mz, and
M x contain the edges of 92;, subdomain edge &£, subdomain face F, and
OF, respectively. We denote by G; 7, G;e, and G, sets of subdomain faces,
subdomain edges, and subdomain vertices for £2;. The wire basket W is the
union of all subdomain edges and vertices for 2;. We will also make use of
the symbol w; := 1 + log(H;/h;), and bold faced symbols refer to vector
functions. We denote by p; the mean of p; over (2;.

The estimate in the next lemma can be found in several references, see
e.g., Lemma 4.16 of Toselli and Widlund [2005].

Lemma 1. For any p; € Wg}fad and subdomain edge £ of §2;,



4 Clark R. Dohrmann and Olof B. Widlund

||pi\|%2(5) < Cwini”?{l(Qi)' (5)
Lemma 2. For any p; € Wgh;ad, there exist p;y, Dic, PiF € Wg}fad such that

piloo, = Z pivlen, + Z pielon; + Z pirloo:, (6)

VeGiv £€bis Febir

where the nodal values of pyy, pie, and p;r on 0£2; may be nonzero only at
the nodes of V, £, and F, respectively. Further,

pivlin ) < CllpillEn o, "
ity < ol s o
pirlt ) < CW Ipillin .- )

Proof. The estimates in (7-9) are standard, and follow from Corollary 4.20
and Lemma 4.24 of Toselli and Widlund [2005] and elementary estimates.

We note that a Poincaré inequality allows us to replace the H'-norm of p;
by its H'-seminorm in Lemmas 1 and 2 if p; = 0.
The next lemma is stated without proof due to page restrictions.

Lemma 3. Let f; € W:;ad have vanishing nodal values everywhere on 0f2;
except on the wire basket W; of (2;. For each subdomain face F of §2; and
Ch; <d < H;/C, C > 1, there exists a v; € szﬂ such that vie = V fie for

all e € Mg, v,e =0 for all other edges of 012;, and

villZ2(2,) < CWill fillz2ar) + IV Fi - torllizor)s (10)
IV X vil|72(0,) < CTDNfill 207 + IV i - tor|F20), (11)

where tyr is a unit tangent along OF, and

T(d)_{ 0 ifd>H;/C

T ) d2 otherwise.

The Helmholtz-type decomposition and estimates in the next lemma will
allow us to make use of and build on existing tools for scalar functions in
H'(£;). We refer the reader to Lemma 5.2 of Hiptmair and Xu [2007] for the
case of convex polyhedral subdomains; this important paper was preceded
by Hiptmair et al. [2006], which concerns other applications of the same
decomposition.

Lemma 4. For a conver and polyhedral subdomain §2; and any u; € WC}Z'M,
there is a q; € Wi W, € (Wgh;ad)?’, and p; € Whi 4 Such that

curl’ gra
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w; = q; + IT" (%) + Vp;, (12)

IVpillzz(a,) < Clluillrz2(a;). (13)

[¥illL2(2,) < Clluillz2())s (14)

1B @il 7200 + 1ill3 0, < CIV X willZ2(q,)- (15)

Lemma 5. For any u; € szrl with u;e = 0 for all e € Mg and € € Gg,
there exists a v; € Wh

i such that vie = u;e for all e € Mpg,,

v = Z ViF, (16)

Febir
where v;r. = 0 Ve € Mag, \ Mx. Further,
Ei(viF) < Cw?E;(uy;), (17)
where the energy E; is defined in (3).

Proof. Let p; in (12) be chosen so p; = 0. This is possible since a constant
can be added to p; without changing its gradient. Because u;e = 0 for all
e € Mg, it follows from Lemmas 1 and 4 and elementary estimates that

IVpi - tellae) < NI (W) + @) - tell 72
< Cwil|V X wil|Z2(q,)- (18)

For each subdomain face F of {2;, we find from Lemmas 2 and 4 that

IVpirll7z(a,) < Cwilluillizio,- (19)
Define
piw = Z piv + Z pig, d:= {max(di,C’h,-) otherwise,
Veg;v £€Gie

where d; := \/a;/B;. Further, let p;)y and p;+ denote the functions f; and
v;, respectively, of Lemma 3. For each subdomain face F of {2;, we then find
from Lemmas 1 and 3 and (18) that

Ei(pir) < CwlE;(u;), (20)

where pire = Vpiwe Ve € Mz and pir. = 0 Ve € Myg, \ Mg. With
reference to (12) and (4), we define

qiF ‘= Z gieNe, (21)
eEM £
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and from elementary finite element estimates and Lemma 4 find

Igir 720, < CH Z G < Cllaill72 (0, < Cllwillizqa,,  (22)
eeMr

IV X @irlliz2i0,) < Chi > ai < CIV x w320, (23)
eeEMx

It follows from Lemmas 2 and 4 that there exists a ¥, € (W;r;d)?’ such that

W, = W, at all nodes of F, that vanishes at all other nodes of 92;, and
iz |72, < Cl®ill 72000 < ClluillFzo,, (24)
IV X @izl () < Cf Wil 0y < CO IV X will T2, (25)
From Lemmas 1 and 4, we obtain

||WiH%2(8]-') < Cwi”g’iﬂip(ni) < Cwil[V % Ui||%2(ni)~ (26)

Let W57 € (Wg}?ad)3 be identical to ¥; at all nodes of F and vanish at all

other nodes of §2;. For g := IT" (¥;5), we define

gir = Y glNe. (27)
eeEMx

From elementary estimates and (26) we then obtain

gl ) < CHATIn o) < Corh2IV % wilZaggy (28)

[V < gi]:”zL?((h) < Cwil[V x UiH%?(n,;y (29)
Defining

vir = Vpir + pir + @ir + 1" (¥;7) + gir, (30)

we find v;Fe = uje Ve € Mgz and v;x. = 0 Ve € Mg, \ Mx. The estimate in
(17) then follows from the bounds for each of the terms on the right-hand-side
of (30) along with elementary estimates for IT" (¥, ) .

3 BDDC

Background information and related theory for BDDC can be found in several
references including Dohrmann [2003], Mandel and Dohrmann [2003], Mandel
et al. [2005], Li and Widlund [2006], Brenner and Scott [2008]. Let ur, and
ur denote vectors of finite element coefficients associated with I'; and I". In
general, entries in ur, and ur; are allowed to differ for j # 4 even though
they refer to the same finite element edge. Entries in the vector @, are
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partially continuous in the sense that specific edge values or edge averages
over certain subsets of I' are required to match for adjacent subdomains. In
order to obtain consistent entries, we define the weighted average

N
ir, = R; Y R] Djir,, (31)

j=1

where R; is a 0-1 (Boolean) matrix that selects the rows of up; from ur and
Dj is a diagonal weight matrix with positive entries. The weight matrices
form a partition of unity in the sense that

N
> RIDiR; =1, (32)

i=1

where I is the identity matrix. To summarize, 4, is fully continuous while
@r, is only partially continuous. The number of continuity constraints that
must be satisfied by all the %, determines the dimension of the coarse space.

Let S; denote the Schur complement associated with I7;, which is defined
in (39). The system operator for BDDC is the assembled Schur complement

N
S=> RlSR;. (33)

i=1

From Theorem 25 of Mandel et al. [2005], the condition number of the BDDC
preconditioned operator is bounded above by

N T ~
- Ur Siur,
k(M~1S) < sup Z:Zl# (34)
Ur, Z»_ ﬂT Sﬂp
i =1 "I Pr
This remarkably simple expression shows that the continuity constraints for
ur, should be chosen so that large increases in energy do not result from the
averaging operation in (31).
For simplicity of notation, we will refer to u; as the vector of edge finite
element coefficients for 2;. We have the decomposition

i = REup, + R up,, (35)

where ur, and uj, are vectors of coeflicients associated with I and the interior
of {2;, respectively, and each row of R, and R, has one nonzero entry of
unity. We further decompose ur, as
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uip = Z Rlpuir + Z Rlcue, (36)
FeGiF £e€Gie
= Y Riruir + Rpyuw, (37)
FeGiF

where W; denotes the wire basket for I; and W) = I; \ W,;. The Schur
complement associated with I'; can be expressed as

Si=Arn — AnL AL AL, (39)
where A; is the stiffness matrix for §2; and
Arr, = Rr,AiRT., Apg, =RrAR], Apr =R, AR], ete. (40)
Similarly, for W} and F, we introduce the Schur complements
Sw; = Rw;SiRy,, Sz = RirSiRlF. (41)
Lemma 5 is now rewritten in matrix-vector notation as
(Ri}‘Ui[‘)TS]-'i (RiFuir) < Cw?(RWi/uip)TSWI{(RWi/uip). (42)

Because of page restrictions, we only consider a very rich coarse space
which includes every edge of each subdomain edge. This coarse space corre-
sponds to Algorithm C of Toselli [2006]. In this case, we have

where Au := @ — 4, and it follows from (37) and the positive definiteness of
Sl' that

FeGir

Let §2; denote the subdomain which shares F with (2;, and consider the
generalized eigenvalue problem

Sr® = Sy BA, (45)

where @ is a matrix of eigenvectors normalized so that @TSijS =1 and A is
a diagonal matrix of positive eigenvalues. Introducing the change of variables
u; F = Pw;r, we obtain
AuinS}-i Au;r = AwiT}-AmAwif, (46)
AuijS}-j Aujr = AwJT}-Iij}-. (47)
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Choosing
WiF = WiF = (A+ 1) (Adir +0jF), (48)
we find
Aw;r = (A+ 1) (iF — wir), (49)
Awjr = (A+ 1) A(djF — dir), (50)

and from (46) and (47) obtain
AuZTfoiAuif + Au]T;ch:j Auj}- < 4(11ichSJ:iﬂi_7.‘ + ’CL;‘-F]_—Sfjﬂj]:). (51)

From (44), (51) and (42), we obtain

N N
> Auf S Aur, < Cw®> it Siir,, (52)

i=1 i=1

where
w =max 1+ log(H;/h;). (53)

Finally, from (34), (52), and the triangle inequality, we obtain

Theorem 1 (Condition Number Estimate). The condition number of
the BDDC preconditioned operator for this study is bounded by

K < Cuw?. (54)

In summary, we have obtained a favorable condition number estimate that
requires no assumptions on the material properties of the subdomains. We are
unaware of any other algorithms for 3D H(curl) problems with this property.
Comparing the condition number estimate of Theorem 1 with those in (1) and
(2), we see that the factor of H23;/c; has been removed and the logarithmic
factor has been reduced from four powers to two. We note that the estimate in
Theorem 1 also holds for FETI-DP due its spectral equivalence with BDDC.

The algorithm involves a change of variables for edges of each subdomain
face, and the choice for w;r and W,z in (48) corresponds to the diagonal
weight matrices

RigD;Rly = A(A+1)7", (55)
RizD;R- = (A+1)~". (56)
We note this change of variables can be implemented in practice with just a

few simple modifications to the standard BDDC algorithm. Referring back
to the discussion before (46), the change of variables can be expressed as
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u;ir = Tyw;r.

Notice that rows of the square transformation matrix 7; for edges not on a
subdomain face will have a single diagonal entry of unity since no change
of variables is made for those edges, while the rows of T; corresponding to
subdomain face F are obtained from the matrix of eigenvectors @ appearing
n (45). One can then replace D; in (31) by D; := TijCTj*l, where Dj, is
the diagonal weight matrix associated with the new variables (see (56)). In
terms of the algorithm in Dohrmann [2003], the changes amount to replacing
W; in (16) and (19) by D; and W; in (18) and (20) by DT. The importance
of the change of variables for some problems is shown in the next section.

4 Numerical Results

In this section, we present some numerical results to verify the theory and also
to provide some additional insights. The domain is a unit cube discretized
into smaller cubic elements. All the examples are solved to a relative residual
tolerance of 10~ for random right-hand-sides using the conjugate gradient
algorithm with BDDC as the preconditioner. The number of iterations and
condition number estimates from conjugate gradients are under the headings
of iter and cond in the tables. We consider three different types of weights for
the averaging operator. The first one, designated eig, is the one of the previous
section based on a change of variables and the solution of an eigenproblem.
Unless otherwise specified in the tables, this is the weighting used. The second
type, stiff, is based on a conventional approach in which the weights are
proportional to entries on the diagonals of subdomain matrices. The third,
card, uses the inverse of the cardinality of an edge, i.e. the reciprocal of the
number of subdomains sharing the edge, for the weight.

The results in Table 1 are consistent with theory, suggesting condition
numbers are bounded independently of the number of subdomains, while the
results in Table 2 are consistent with the log(H/h)? estimate of Theorem 1.

We also consider a checkerboard distribution of material properties in
which (a, ) for a subdomain is either (ay,1) or (asg,32), and note that
subdomains with the same properties are connected together only at their
corners. Results for 64 cube subdomains each with H/h = 4 are shown in
Table 3. Notice for only one choice of material properties in the table that
all three types of weighting lead to small condition numbers, and only the
etg approach always gives condition numbers which are independent of the
material properties. We also investigated another type of weighting similar to
card, but with weights v, 0 < v < 1 for faces of subdomains with properties
a1, 31 and 1 —~ for faces of subdomains with properties as, f2. Regardless of
the choice of 7, large condition numbers were observed for the properties in
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the final row of Table 3. We note also that the choice of material properties
in the final row is not covered by the theory of Toselli [2006].

In the final example, we consider a cube mesh of 20% elements that is
partitioned into different numbers of subdomains using the graph partitioner
Metis Karypis and Kumar [1998]. Although this example is not covered by our
theory because the subdomains have irregular shapes, the results in Table 4
indicate that the algorithm of this study continues to perform well. The
results in Tables 3 and 4 suggest that the eig weighting of this study may be
necessary in order to effectively solve problems with material property jumps
or with subdomains having irregular shapes.

Table 1 Results for N cube subdomains, each with 8 =1 and H/h = 4.

N a=10% a=1 a=10"2
iter (cond) iter (cond) iter (cond)
43 15 (2.70) 14 (2.63) 10 (1.77)
63 16 (2.88) 15 (2.81) 11 (2.05)
8% 16 (2.95) 15 (2.87) 12 (2.23)
10% 17 (2.98) 16 (2.91) 13 (2.33)

Table 2 Results for 64 cube subdomains, each with g = 1.

H/ha=102 a=1 a=10"2
iter (cond) iter (cond) iter (cond)
4 15 (2.70) 14 (2.63) 10 (1.77)
6 17 (3.30) 16 (3.21) 11 (2.14)
8 18 (3.77) 16 (3.66) 13 (2.46)
10 19 (4.16) 18 (4.03) 13 (2.72)

Table 3 Checkerboard material property results for 64 cube subdomains with H/h = 4.

a1 b1 az B2 eig stiff card
iter (cond) iter (cond) iter (cond)

(
4.57) 196 (1.64e3)
(

1 1 1021 10 (1.59) 19 (

1 1 1 103 11 (1.96) 84 (2.69¢2) 109 (4.72¢2)
1 1 1 1.01 14 (2.63) 14 (2.63) 14 (2.63)
10210721 1 6 (1.07) 65 (3.17e2) 74 (1.65¢2)
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Table 4 Results for 20% elements partitioned into N subdomains using a graph partitioner.
Material properties are constant with a =1 and 8 = 1.

N eig stiff card
iter (cond) iter (cond) iter (cond)

60 19 (4.30) 189 (6.31e2) 24 (9.06)
65 19 (4.40) 184 (6.34e2) 29 (1.55¢3)
70 18 (3.89) 188 (6.47¢2) 23 (7.48)
75 19 (4.16) 176 (6.12¢2) 23 (6.49)
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