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Liquid Fuels in The United States

Energy Independence and Security Act of 2007:

Cellulosic Biofuel Requirements:

• 500 million gallons of cellulosic biofuels for 2012 
• 1 billion gallons for 2013
• 16 billion gallons by 2022
*corn ethanol production = 13 billion gallons (2012)

• 140 billion gallons of gasoline a year

500,000,000 – 20,000 = 499,980,000. 

20,000 gallons of cellulosic biofuels actually produced in 2012. 



Breaking Down Cellulose: Fungal Endophytes are 
Tunable Platforms

•Certain fungi can convert cellulose 
directly into a variety of volatile organic 
compounds (VOCs).

•Unfortunately these VOCs do not 
include octane.

•These “fuels” need to be characterized. 
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Investigating Fungal Conversion of Cellulose for 
Liquid Fuels: Collaboration!



• Quartz flowtube heated up to 700 K

• Gas mixture contains sample, Cl2, O2 and He  
(8 Torr)

• 4 Hz excimer photolysis laser

• Tunable synchrotron VUV ionizing radiation

• 3-Dimentional data sets; 50 kHz TOF sampling

Experiment: Chlorine-Initiated Oxidation using MPIMS

Cl2
h (351 nm)
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D.L. Osborn et 
al.
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Background: Oxidation of n-propyl Radical

• Do not typically detect OH and HO2 directly in MPIMS. 
• Instead observe coproducts at Parent – 2 (unsaturated hydrocarbon) and 

Parent + 14 (cyclic ether)
• QOOH never observed but vital intermediate in chain-propagating and 

chain-branching channels

J. D. DeSain et al. J. Phys. Chem. A 2003, 107, (4415). 



Fuels From Fungus: Investigating Branched Ketones
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• Di-tert-butyl ketone is the largest but most simple
• No HO2-elimination pathway analogous to n-propyl + O2



Fuels From Fungus: Investigating Branched Ketones
Ring Closure Yielding HO2-Elimination?

IE = 8.65 eV
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Open-Chain Ketones: Rapid Radial Rearrangement Reactions?

Karl et al. J. Org. Chem. 37, 2834 (1972)

• Thermodynamic driving force depending on substituents

• Competition with O2-addition in gas phase oxidation

• Neither product available for comparison.
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Fuels From Fungus: Methyl-tert-butyl Ketone
Rapid Radial Rearrangement Reactions?
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• Fast in conditions of our study 
relative to O2-addition

• Detected by HO2-elimination 
products

• Likely important in family of 
branched ketones
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Switching Gears: Cyclic Ether Formation Possibilities in Diethyl 
Ketone Oxidation

• 3 distinct RO2  QOOH  Cyclic Ether + OH channels for propane oxidation

• 2 possible cyclic ether products

• 6 distinct RO2  QOOH 
Cyclic Ether + OH channels for 
diethyl ketone oxidation

• 4 possible cyclic ether products
• All at m/z 100
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Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones

HC

O CH2

CH2

C

O

H3C

CH2

C
CH

O

CH2H3C

O

CD2

C
CD2

O

CH2H3C O2+

OH

D2C
C

CD2

O

CH2H2C
O

DC

O CH2

CD2

C

O

H3C

CD2

C
CD

O

CH2H3C

O

m/z 104

m/z 103

m/z 103

CD2

C
CD

O

CH3H3C O2+

OH

DC

O CH2

CD2

C

O

H3C

CD2

C
CD

O

CH2H3C

O

m/z 103

m/z 102

m/z 103

DC

O

CD

C

O

H3C CH3

CD2

C
CD2

O

CH2H3C O2+

OH

D2C
C

CD2

O

CH2H2C
O

DC

O CH2

CD2

C

O

H3C

CD2

C
CD

O

CH2H3C

O

m/z 104

m/z 103

m/z 103

CD2

C
CD

O

CH3H3C O2+

OH

DC

O CH2

CD2

C

O

H3C

CD2

C
CD

O

CH2H3C

O

m/z 103

m/z 102

m/z 103

DC

O

CD

C

O

H3C CH3

CH2

C
CH2

O

CD2D3C O2+

OH

H2C
C

CH2

O

CD2D2C
O

HC

O CD2

CH2

C

O

D3C

CH2

C
CH

O

CD2D3C

O

m/z 104

m/z 105

m/z 105

CH2

C
CH

O

CD3D3C O2+

OH

HC

O CD2

CH2

C

O

D3C

CH2

C
CH

O

CD2D3C

O

m/z 105

m/z 106

m/z 105

HC

O

CH

C

O

D3C CD3



CH2

C
CH2

O

CH2H3C
CH2

C
CH2

O

CH2H3C

CH2

C
CH

O

CH2H3C

O

H2C
C

CH2

O

CH2H2C
O

HC

O CH2

CH2

C

O

H3C

CH2

C
CH

O

CH2H3C

CH2

C
CH2

O

CH2H2C

CH
C

CH2

O

CH2H3C

O
O

O
OH

O
OH

O
OH

Rp

O2

OH

OH

OH

1

2

3

Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones
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membered ring cyclic ether + OH



Why Cyclic Ether Selectivity in Diethyl Ketone Oxidation?

• Resonance 
stabilization of 
secondary radical

• RO2-well ~ 24 
kcal/mol – shallow!

• R + O2 RO2

shifted to reactants

• All cyclic ether, HO2-
elimination and 
bond breaking 
pathways above 
entrance channel 

• No resonance 
stabilization of 
primary radical

• RO2-well ~ 36 
kcal/mol

• R + O2 RO2

shifted to products

• 5-membered ring 
pathway lowest 
energy and benefits 
from resonantly 
stabilized QOOH
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Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones

CH2

C
CH

O

O

H3C CH3

HC

O

CH

C

O

H3C CH3

O

CH
C

CH

O

O

H3C CH3

CH2

C
CH

O

O

H2C CH3

CH2

C
CH

O

O

H3C CH2

HO

HO

HO

CH2

C
CH

O

CH3H3C

CH2

C
CH

O

CH2H3C

O

HC

O CH2

CH2

C

O

H3C

Rs

O2

OH

OH

OH

4

5

6

Combination of experiment and 
theory allows assignment of 
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Why is Very Little Cyclic Ether produced in Methyl-tert-butyl Ketone 
Oxidation Compared to Diethyl Ketone?

• Lowest energy oxidation pathway 
for diethyl ketone is formation of 5-
membered ring Cyclic Ether + OH

• HO2-elimination competes as well

• Radical rearrangement of methyl-tert-
butyl ketone radical is fast relative to 
O2 addition

• Lowest energy pathway of rearranged 
tertiary radical is HO2-elimination

• Ignition delay experiments consistent
(Chang, Fernandes et al.)



Investigating fundamental ignition chemistry of 
promising biofuels: Cyclic ketones

• Cyclic ketones almost exclusively 
undergo HO2-elimination.  No cyclic 
ether product observed.
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Oxidation of ketones: What have we learned?

• Thermodynamic driving force leads to rapid radical rearrangement of γ-radicals 

• These internal isomerizations lead to new chain-terminating HO2-elimination 
channels.

• 5-membered ring cyclic ether formation via resonantly-stabilized QOOH 
dominates chain-propagation pathways.

• Resonance stabilization of initial vinoxylic radicals results in very low reactivity.
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