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Rapid Radical Rearrangement of Ketones and selective chain-
propagating channels via resonantly-stabilized QOOH
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Liquid Fuels in The United States

* 140 billion gallons of gasoline a year

Energy Independence and Security Act of 2007:

Cellulosic Biofuel Requirements:

* 500 million gallons of cellulosic biofuels for 2012
* 1 billion gallons for 2013

* 16 billion gallons by 2022
*corn ethanol production = 13 billion gallons (2012)

20,000 gallons of cellulosic biofuels actually produced in 2012.

500,000,000 — 20,000 = 499,980,000.



Breaking Down Cellulose: Fungal Endophytes are
Tunable Platforms

Certain fungi can convert cellulose

directly into a variety of volatile organic
compounds (VOCs).

*Unfortunately these VOCs do not
include octane.

*These “fuels” need to be characterized.
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Investigating Fungal Conversion of Cellulose for
Liquid Fuels: Collaboration!
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Experiment: Chlorine-Initiated Oxidation using MPIMS
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Background: Oxidation of n-propyl Radical
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* Do not typically detect OH and HO, directly in MPIMS.

* Instead observe coproducts at Parent — 2 (unsaturated hydrocarbon) and
Parent + 14 (cyclic ether)

*  QOOH never observed but vital intermediate in chain-propagating and
chain-branching channels



Fuels From Fungus: Investigating Branched Ketones
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Fuels From Fungus: Investigating Branched Ketones

Ring Closure Yielding HO,-Elimination?
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experimental onset.
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Open-Chain Ketones: Rapid Radial Rearrangement Reactions?
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* Thermodynamic driving force depending on substituents

* Competition with O,-addition in gas phase oxidation
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Fuels From Fungus: Methyl-tert-butyl Ketone
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Switching Gears: Cyclic Ether Formation Possibilities in Diethyl

Ketone Oxidation
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Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones
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Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones
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Why Cyclic Ether Selectivity in Diethyl Ketone Oxidation?
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Isolation of Cyclic Ether Channels: Deuterated Diethyl Ketones
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Why 1s Very Little Cyclic Ether produced in Methyl-tert-butyl Ketone
Oxidation Compared to Diethyl Ketone?

* Lowest energy oxidation pathway
for diethyl ketone is formation of 5-
membered ring Cyclic Ether + OH

Energy .. (kcal/mol)

* HO,-elimination competes as well

10

* Radical rearrangement of methyl-tert- o BT g we o
butyl ketone radical is fast relative to 10 vans
O, addition "

=20+

-30+

* Lowest energy pathway of rearranged _
tertiary radical is HO,-elimination 40
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* Ignition delay experiments consistent
-60 — «OH + HC
(Chang, Fernandes et al.) L



Investigating fundamental 1ignition chemistry of
promising biofuels: Cyclic ketones
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Oxidation of ketones: What have we learned?

Thermodynamic driving force leads to rapid radical rearrangement of y-radicals
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*  These internal isomerizations lead to new chain-terminating HO,-elimination

channels.

* 5-membered ring cyclic ether formation via resonantly-stabilized QOOH
dominates chain-propagation pathways.
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*  Cyclic ketones react almost exclusively by chain-terminating HO,-elimination.
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Ion Signal (Integrated 8.5-10.9 eV; Arb. Units)
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No O,; Scaled Ion Signal (Arb. Units)
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