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What is Peridynamic Theory (PD)? 

• Peridynamic theory is a theory of continuum mechanics 

that uses integro-differential equations without spatial 

derivatives rather than partial differential equations. 

– Bond-Based Peridynamics1  

– State-Based Peridynamics2  

1Silling,  “Reformulation of elasticity theory for discontinuities and long-range forces”, in Journal of the 

Mechanics and Physics of Solids, 48 (2000) , pp. 175-209.  (Silling 2000) 
2 S.A. Silling et al. “Peridynamic States and Constitutive Modeling”, in J Elasticity, 88 (2007), pp. 151–184.  

(Silling 2007) 

Peridynamic means “near force”. 

It is a reformulation of continuum 

mechanics that applies everywhere 

regardless of discontinuities. 
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Why use Peridynamics? 

• The fundamental partial differential equations used in 

conventional finite element or particle codes do not apply 

at discontinuities. 

• Peridynamics can solve problems that are difficult to solve 

using other methods. 

• With peridynamics, cracks initiate and grow spontaneously 

as a consequence of the governing equation and 

constitutive model, and there is no need for externally 

supplied laws or locations of cracks. 



What is Bond-Based Peridynamics? 
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• In bond-based peridynamics the force state at a point is given by a 

functional over the pairwise interactions with all other points in the 

continuum. 
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• The force per unit volume squared between particles 

located a two points is given by the pairwise force 

function (PFF)    . 

– Peridynamic interaction between two points is called a bond. 

– Presently, for solids the PFF magnitude is a piecewise linear 

function (elastic, perfectly plastic). 

• Constitutive properties of materials are given by 

specifying the PFF.  

– Thus, material response, damage, and failure are determined 

at the bond level. 

– A bond fails when its stretch exceeds an input called the 

critical stretch. 

• Bond properties are derivable from measured material 

properties including: 

– elastic modulus, yield properties, and fracture toughness. 

Material Modeling in Bond-Based 
Peridynamics 
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What is State-Based Peridynamics? 
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• In state-based peridynamic theory the force state at a point is given by 

a functional over the relative displacements of all other points in the 

continuum. 



• Force states provide for infinite “degrees of freedom” 

– Classical theory only provides six “degrees of freedom 

Why do we want to implement 
state-based peridynamics? 

• State-based version has the potential to  

– utilize material models that were developed for continuum 

mechanics, including models developed for finite-element methods    

– model composite materials. 
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– Force State provides infinite “degrees of freedom”   

 

Composite 

• Fibers can be modeled 

separately from matrix. 

• Fibers in any direction 

can be modeled 

separately from the 

others. 



Numerical Method 

• The computational region is 

discretized into nodes with a 

known volume in the reference 

configuration, forming a grid of 

nodes. 

• For each node, the peridynamic interaction is 

assumed to be zero outside a distance  called the 

horizon. 
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• The fundamental equation is replaced by a finite 

sum, which at time tn is 
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Implementation in Kraken Computer Code 

• Peridynamic theory is implemented 

in the Kraken computer code. 

• Kraken is 

– mesh free (no elements, just generate a 

grid of nodes), 

– Lagrangian (each node represents a 

fixed amount of material), 

– explicit (simple, reliable time-integration 

method), 

– parallel (executes on multiple 

processors). 

• To enhance usability, we are 

developing KFragS (Kraken 

Fragmentation Analysis System), a 

graphical user interface (GUI). 

 



Damage at 0.64 s 

High-Impulse Impact Loading of a Structure 
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High-Impulse Impact Loading of a 
Structure Filled with Water 
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• Program burn model for detonation times. 

– Detonation times computed prior to time advancement using 

Huygen’s construction. 

– Detonations can propagate around obstacles. 

• Upon detonation: 

– Reaction products are treated as ideal or Jones-Wilkins-Lee gas 

undergoing an adiabatic expansion. 

– PFF for reaction products developed from equating the work in 

expanding a bond to the change in internal energy. 

– Energy conserved using volume-burn algorithm. 

• Detonation model inputs: 
– Location of detonation point(s) and initial detonation time(s), 

density of unreacted explosive, and detonation speed. 

– Parameters for equation of state (ideal gas or JWL). 

Peridynamic Detonation Model 



Blast Loading of a Structure 

Structure has 6-ft thick walls and floor slab.  The floor slab is 40 ft by 52 ft.  The 

walls are 45 ft above the floor.  All concrete is reinforced with #18 rebar at 12-in 

spacing.  A cubic yard of explosive with unreacted density 1785 kg/m3 and 

detonation speed 8747 m/s is placed on the floor at the center of the wall and 

detonated at time zero. 

Materials Damage 
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Mass Distribution for Fragmentation Test 

with 4340 Steel and TNT 

Cumulative Mass Distribution  

(CMD) at 500 s 

Fragment Distribution 

at 500 s 

80 s 
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Tunnel-Wall Stability 

• Objectives 

– To obtain a better understanding of the fundamental physical 

phenomena governing tunnel wall stability under shock loading 

including identification of key parameters and their relative 

importance for tunnel wall stability during shock loading. 

– To develop advanced numerical models that relate ground motion 

parameters, rock strength properties, tunnel geometry, features, 

and reinforcement such as rock bolts. 

• General Approach 

– Develop a stochastic peridynamics theory that combines 

peridynamic theory with random or fractal material characterization 

of geomaterials. 

– Develop peridynamic shock-loading model and study shock 

propagation in random or fractal media with joints and faults.  

 



Bench Blasting 

Damage 
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Concluding Remarks 

• Peridynamic theory is a physically reasonable and viable 

approach to high-impulse loading and modeling fracture 

and fragmentation phenomena. 

• An iterative verification and validation process is 

improving KRAKEN and increasing confidence in its 

predictive capability for its intended applications. 

• We are expanding our interests to geomechanics problems 

with the tunnel-wall stability and bench blasting work. 

• We are interested in combining peridynamics and the 

discrete element method to solve geomechanics problems. 

• I will be happy to discuss common interests with you. 

• I want to thank you for the opportunity to share with you 

our work in peridynamics and the KRAKEN code. 


