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Introduction

Macroscopic Electrostatics:

pj\fé macroscopic free-charge density

o

1D > macroscopic electric displacement

[ = macroscopic electric field
D= SOE +P=¢ck E > dielectric constant

P > macroscopic polarization

How do we calculate “P” using Molecular
Information using Molecular Dynamics?



Electrical Double Layers
| Models:

°
© @ = Poisson-Boltzmann Theory

e ® @ = Compact-Diffuse Layer Models

o © ® = Mean-Field Models

®

®® © D=8E=80E+P

o z
N Compact Layer modeled b
biffuse P y y

bulk dielectric constant

We need better polarization models to depict reality.
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Today...

" Polarization interms of molecular positions and
charges.

= Dijelectric constant of bulk water

=Application to electrical double layers

= PJAt the interface

= Water at the interface: Dipole and Quadrupole Moments




Microscopic-Macroscopic Connection

Microscopic: Macroscopic:

Coarse
Grain

1
Veex,t) = —p"(x) V- D(xt) = py (x.1)

N Npm . Nn
p(x,t) = Zf: g;0(x — x;) + y: (y: g;o(x — x}*)) w
i=1 j=1

=]

Can we derive macroscopic electrostatics equation from
the microscopic electrostatics equation?

Coarse-graining Charge: Phase-space

~ distribution
pM(x,t) = f fpm(x",t X —x ,1)dI dx’
HJT

o . Mandadapu et. al. (in prep);
Coarse-graining function Irving and Kirkwood, 1950 _




Coarse-graining the microscopic electrostatic equation:

Lﬁaif' s

Macroscagpic electric field

LW fﬁ fr,—fﬁ[f.ﬂmx—x’} £(L, £)dT dx’

(x —x') f(T,t)dT'dx’ = f/ (x',1)A(x — x') (T, t)dI’ dx’

o

!fZqu:{;n X —%n) f(T,£)dT — fzz ;xjn@x}n~£&Iﬁx—xnlﬂf.ﬂﬂ“+...

fie=l d==] =l j=1

\ ) | }
Order of Coarse Graining function A: |
Macroscopic Macroscopic
DigvlstMamegives only dipole mgaeRnbole Moment
" Linear: gives up to quadrupole moment

Irving and Kirkwood, 1950 ¢
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Applied field
>

Bulk Water-
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POLARIZATION [C/Az]

Bulk Water-

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
ELECTRIC FIELD

Polarization vs. Resultant electric field
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Electrical Double Layer — Water + KCl
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POLARIZATION [C/Az]

POLARIZATION [C/AZ]
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POLARIZATION [C/A?]
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e Water at the Interfaces

POLARIZATION [C/m2]
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Dipole and Quadrupole Moments across the channel

QUOdI’UpO/e Moments are NOT width for averaging length of 0.05 Angstroms.

negligible at the interface !!!
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New IVIodeIsl

vle | © e

®

———————

Compa:ct biffuse
D=g E+P

e Study polarization in compact
layer and diffuse layers and
identify intermediate
asymptotic length scales

* Develop new models.
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Coarse-graining the microscopic electrostatic equation:

[ [ el .08 —x) fT,0drax = [ [ g, )AGc—x) ST, AT ax

r Ox’
Macrchtric field

9 _ s _
2 qE(xt) = L /; (¥, t)A(x — %) f(T, £)dT dx’

Macroscopic
free charge N N,

>l i

n=1 j=
Gives rise to dipole and quadrouple moments

when expanded around the center of mass of

the solvent molecule. , ,
Irving and Kirkwood, 1950 5
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| !
Macroscopic Macroscopic
Dipole Moment Quadrupole Moment

Order of Coarse Graining function A:

= Constant: gives only dipole moment
" Linear: gives up to quadrupole moment

Mandadapu et. al., in prep (2012)



