

Multicore/GPGPU Portable Computational Kernels via Multidimensional Arrays

H. Carter Edwards / Sandia National Laboratories

Collaborators:

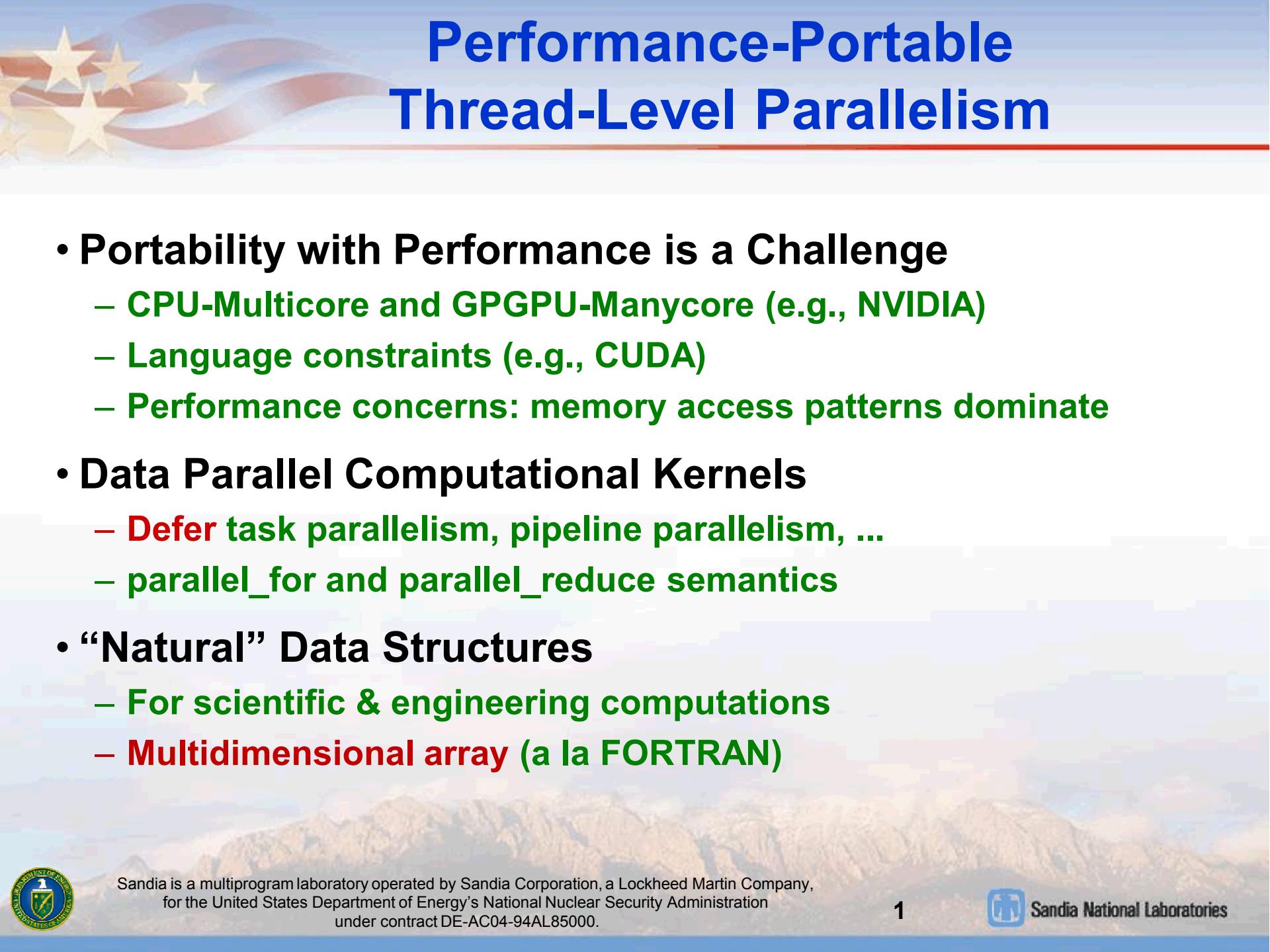
Daniel Sunderland, Vicki Porter, and Michael Heroux / Sandia National Labs

Chris Amsler / Kansas State University

Sam Mish / California State University

7th International Congress on Industrial and Applied Mathematics - ICIAM 2011

Vancouver, BC, Canada / July 18-22, 2011



Performance-Portable Thread-Level Parallelism

- Portability with Performance is a Challenge
 - CPU-Multicore and GPGPU-Manycore (e.g., NVIDIA)
 - Language constraints (e.g., CUDA)
 - Performance concerns: memory access patterns dominate
- Data Parallel Computational Kernels
 - Defer task parallelism, pipeline parallelism, ...
 - `parallel_for` and `parallel_reduce` semantics
- “Natural” Data Structures
 - For scientific & engineering computations
 - Multidimensional array (a la FORTRAN)

Trilinos' Kokkos-Array Library

- An API and Library; Not a Compiler
 - Computational kernels written in **subset of C++ (CUDA v3.x)**
 - Computing on multidimensional arrays
 - Running on a compute device
 - *CPU Multicore, NVIDIA GPGPU, Intel Knights Ferry*
- Simple API
 - Very simple C++ class API for multidimensional arrays
 - Very simple “functor” pattern for computational kernels
 - In the *spirit* of Intel’s Threaded Building Blocks (TBB) or Thrust

Abstractions

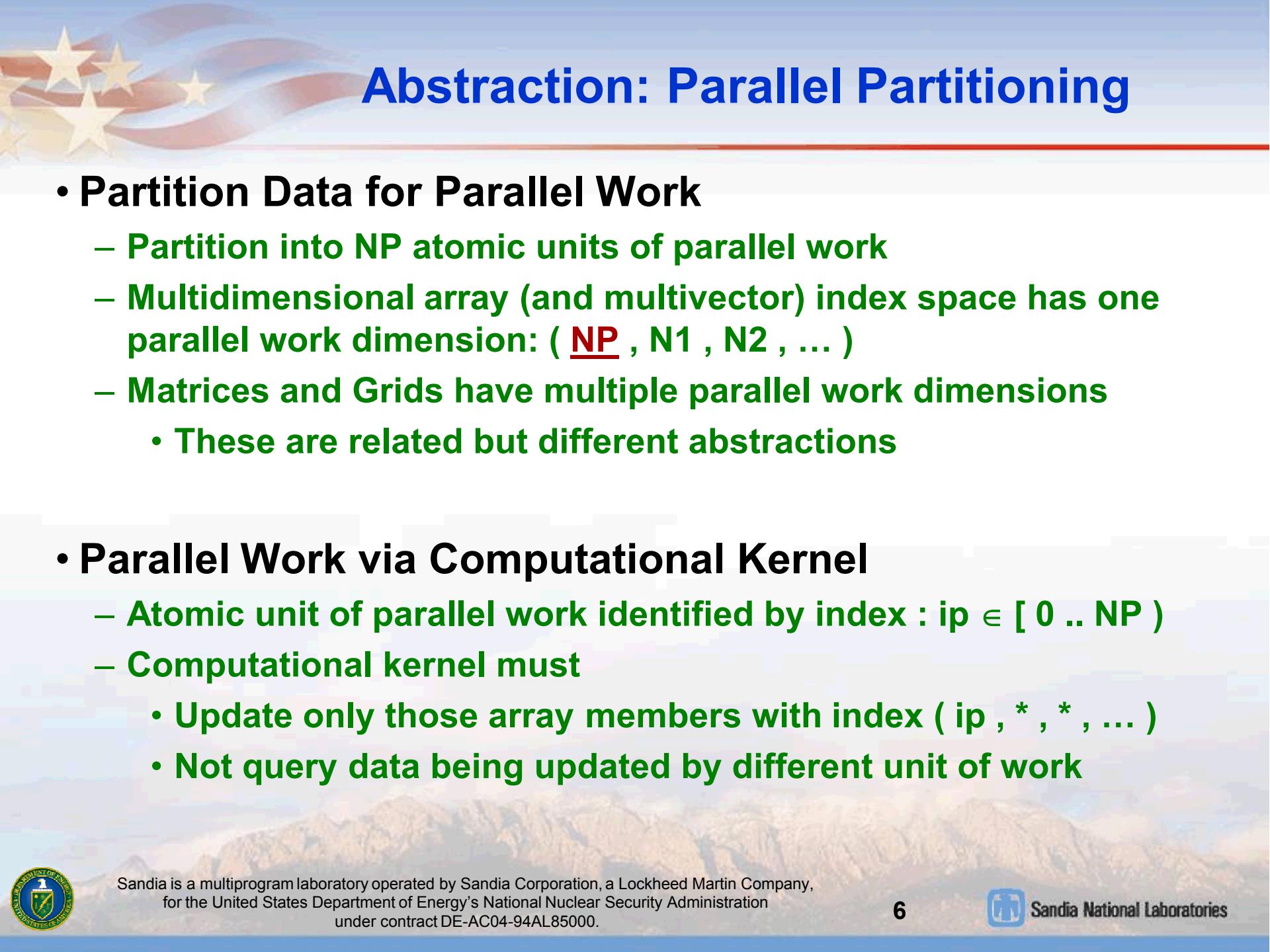
- **Manycore Compute Device**
 - Provides many threads of execution
 - Owns memory space accessible to and shared by those threads
 - At most one device per process (MPI rank)
 - *Choice: for hybrid parallel programming simplicity*
 - **Two levels: global (MPI) and local (data parallel)**
- **Multidimensional Array**
 - and multivector – a special case not covered in this presentation
- **Partitioning and Mapping of Arrays onto a Device**
- **Data Parallel Computational Kernels**

Abstraction: Multidimensional Array

- Homogeneous Collection of Data Members
 - Mathematical, plain-old-data type (for now)
 - Members reside in the memory space of a compute device
 - Members referenced by a **multi-index** in a **multi-index space**
- Multi-index (i_0, i_1, i_2, \dots)
 - Ordered list of indices of a simple integer type
 - Rank – the number of indices
- Multi-index Space
 - Cartesian product of integer ranges
 - Kokkos array: $[0 .. N_0] \times [0 .. N_1] \times [0 .. N_2] \times \dots$
 - Abbreviated as: (N_0, N_1, N_2, \dots)
 - Cardinality = $N_0 * N_1 * N_2 * \dots$

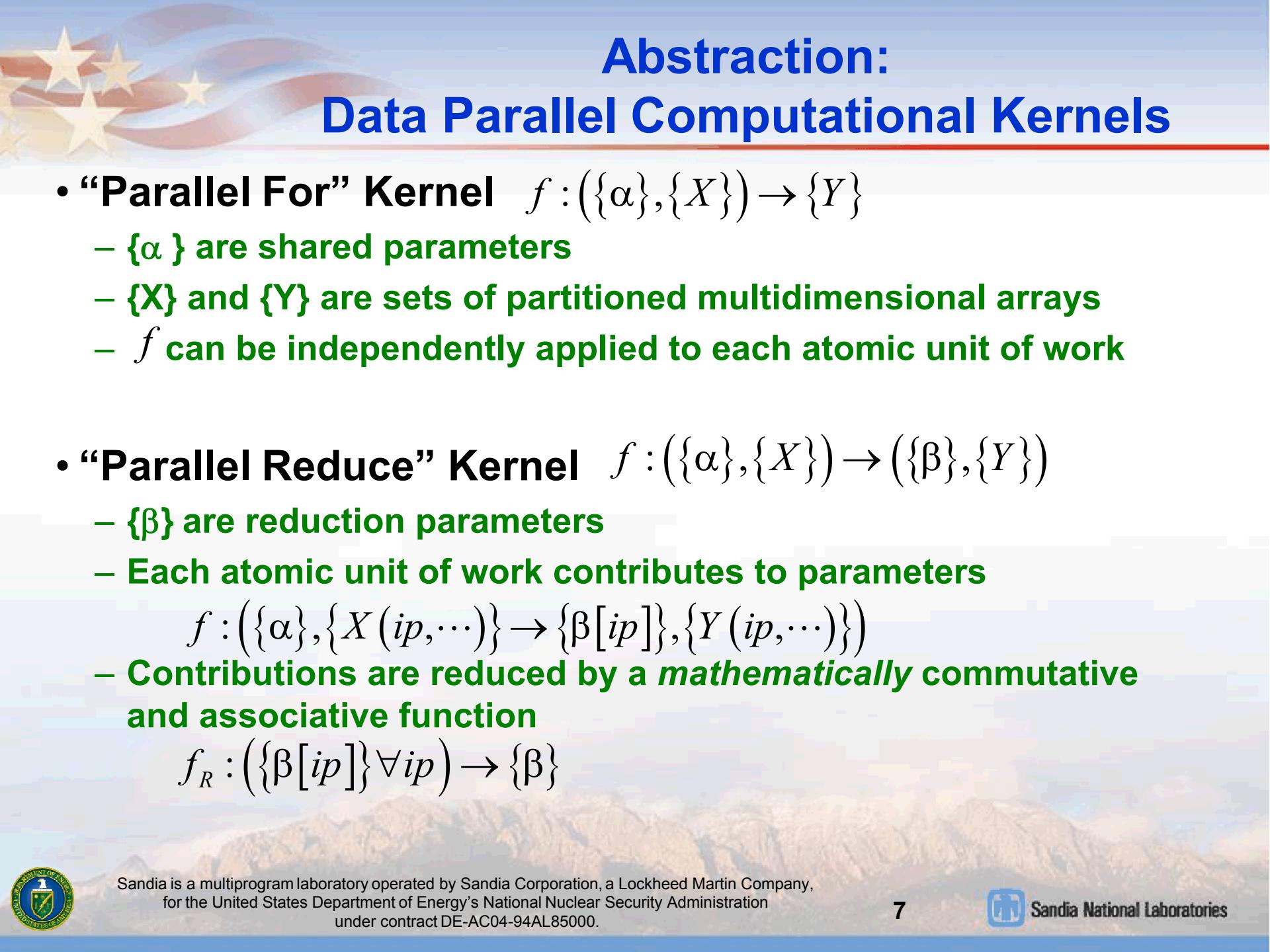
Abstraction: Mapping

- **Multidimensional Array's Map**
 - Bijective map : multi-index space \leftrightarrow array data members
 - $[0 .. N_0] \times [0 .. N_1] \times [0 .. N_2] \times \dots \leftrightarrow$ array data members
- **Two Well-Known Examples**
 - Base location + offset into contiguous block of memory
 - FORTRAN : $(i_0 - 1) + N_0 * ((i_1 - 1) + N_1 * ((i_2 - 1) + N_2 * (\dots)))$
 - C : $(\dots(((i_0) * N_1 + i_1) * N_2 + i_2) * N_3 + i_3) * \dots$
- **Key Concept: Choose the Optimal Map for a Device**
 - Multiple valid maps; your favorite map is not the only valid map
 - Different devices may have different optimal maps



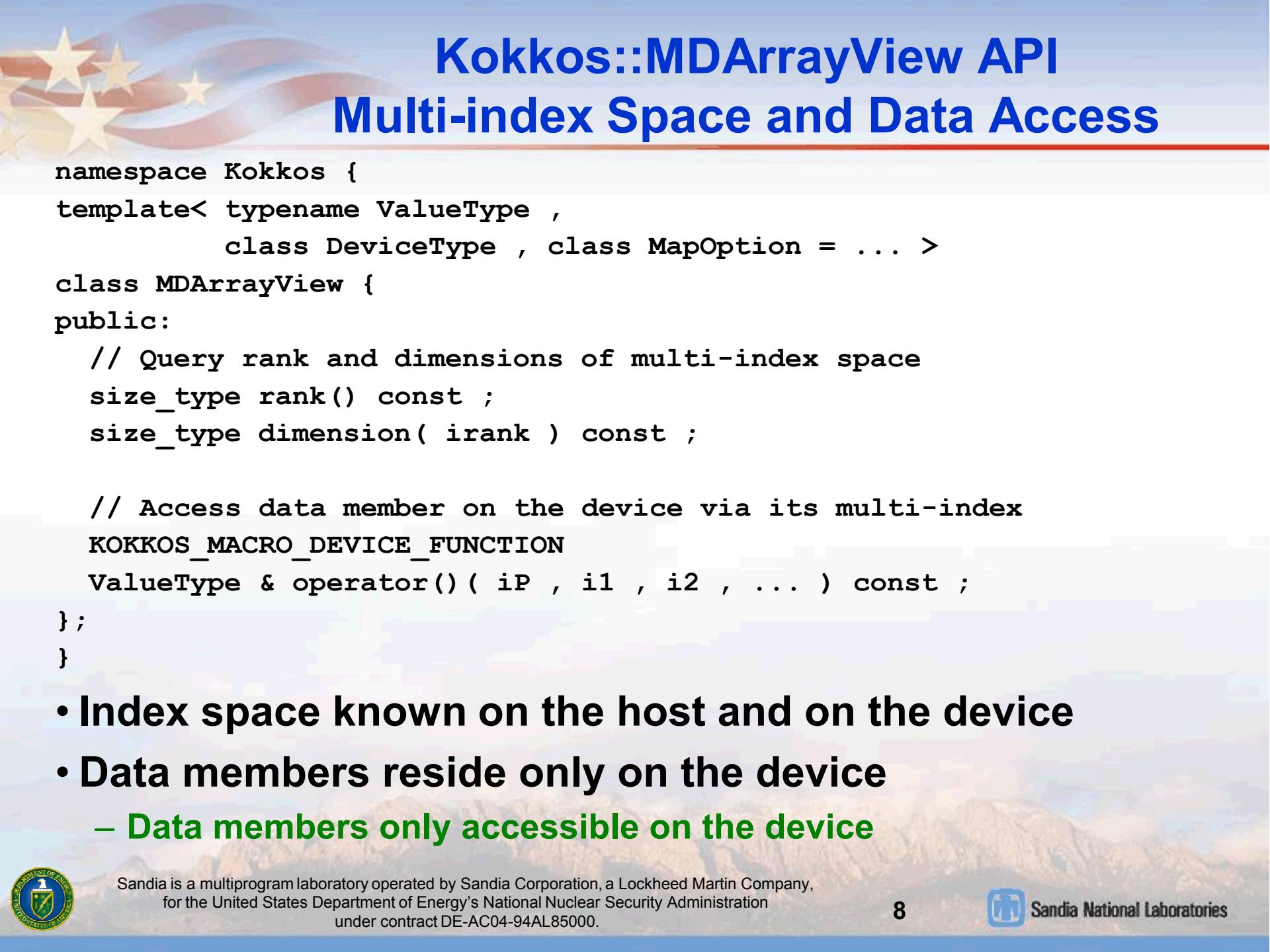
Abstraction: Parallel Partitioning

- Partition Data for Parallel Work
 - Partition into NP atomic units of parallel work
 - Multidimensional array (and multivector) index space has one parallel work dimension: (NP , N1 , N2 , ...)
 - Matrices and Grids have multiple parallel work dimensions
 - These are related but different abstractions
- Parallel Work via Computational Kernel
 - Atomic unit of parallel work identified by index : $ip \in [0 .. NP]$
 - Computational kernel must
 - Update only those array members with index (ip , * , * , ...)
 - Not query data being updated by different unit of work



Abstraction: Data Parallel Computational Kernels

- “Parallel For” Kernel $f : (\{\alpha\}, \{X\}) \rightarrow \{Y\}$
 - $\{\alpha\}$ are shared parameters
 - $\{X\}$ and $\{Y\}$ are sets of partitioned multidimensional arrays
 - f can be independently applied to each atomic unit of work
- “Parallel Reduce” Kernel $f : (\{\alpha\}, \{X\}) \rightarrow (\{\beta\}, \{Y\})$
 - $\{\beta\}$ are reduction parameters
 - Each atomic unit of work contributes to parameters
$$f : (\{\alpha\}, \{X(ip, \dots)\}) \rightarrow (\{\beta[ip]\}, \{Y(ip, \dots)\})$$
 - Contributions are reduced by a *mathematically* commutative and associative function
$$f_R : (\{\beta[ip]\} \forall ip) \rightarrow \{\beta\}$$



Kokkos::MDArrayView API

Multi-index Space and Data Access

```
namespace Kokkos {  
template< typename ValueType ,  
         class DeviceType , class MapOption = ... >  
class MDArrayView {  
public:  
    // Query rank and dimensions of multi-index space  
    size_type rank() const ;  
    size_type dimension( irank ) const ;  
  
    // Access data member on the device via its multi-index  
    KOKKOS_MACRO_DEVICE_FUNCTION  
    ValueType & operator()( iP , i1 , i2 , ... ) const ;  
};  
}
```

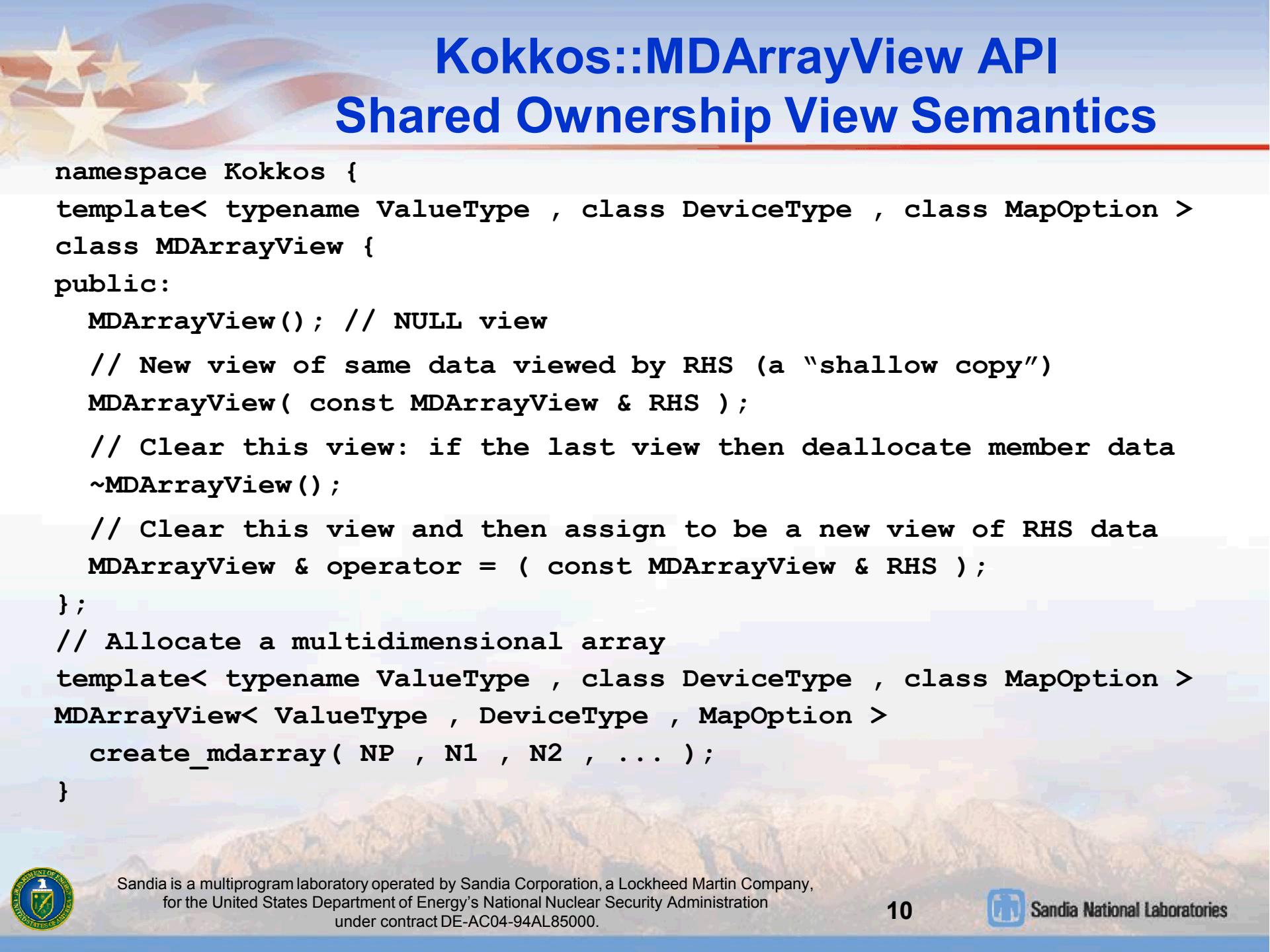
- **Index space known on the host and on the device**
- **Data members reside only on the device**
 - **Data members only accessible on the device**

Kokkos::MDArrayView API

Copy Array Member Data

```
namespace Kokkos {  
template< typename ValueType ,  
         class DeviceDest ,  
         class MapDest ,  
         class DeviceSource ,  
         class MapSource >  
  
void deep_copy(  
    const MDArrayView<ValueType,DeviceDest, MapDest> & dest ,  
    const MDArrayView<ValueType,DeviceSource,MapSource> & source );  
}
```

- “Deep Copy” – Copy Member Data
 - Between arrays on the same device or different devices
 - Between arrays with the same map or different maps



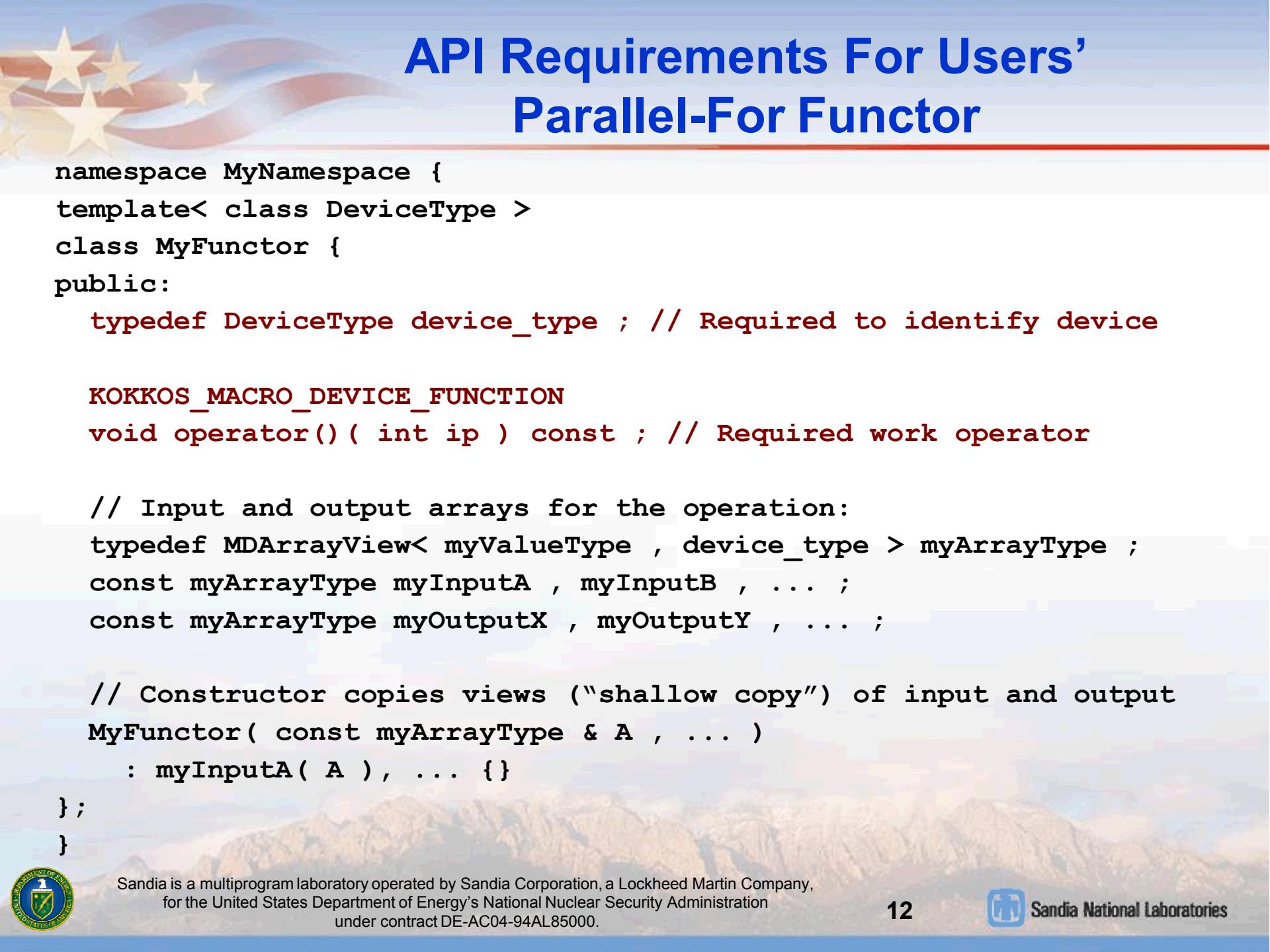
Kokkos::MDArrayView API

Shared Ownership View Semantics

```
namespace Kokkos {  
template< typename ValueType , class DeviceType , class MapOption >  
class MDArrayView {  
public:  
    MDArrayView(); // NULL view  
    // New view of same data viewed by RHS (a "shallow copy")  
    MDArrayView( const MDArrayView & RHS );  
    // Clear this view: if the last view then deallocate member data  
    ~MDArrayView();  
    // Clear this view and then assign to be a new view of RHS data  
    MDArrayView & operator = ( const MDArrayView & RHS );  
};  
// Allocate a multidimensional array  
template< typename ValueType , class DeviceType , class MapOption >  
MDArrayView< ValueType , DeviceType , MapOption >  
    create_mdarray( NP , N1 , N2 , ... );  
}
```

API Requirements: Users' Functors

- **Functor: work function + work data**
 - **Work function is called thread-parallel**
 - Called NP times on up to NP different threads
 - **Work data reside on the compute device**
 - **Work data are accessed through Views**
- **Functors are Passed by Value to the Compute Device**
 - **Functor members are copied**
 - **Copying a view is 'shallow' – the view is copied not the data**
- **Functors are Compiled for the Compute Device**
 - **Work function is restricted: CUDA 3.x – a subset of C++**
 - **NO memory management on the compute device**
 - **Thread safety – only access 'ip' data members**



API Requirements For Users' Parallel-For Functor

```
namespace MyNamespace {
template< class DeviceType >
class MyFunctor {
public:
    typedef DeviceType device_type ; // Required to identify device
KOKKOS_MACRO_DEVICE_FUNCTION
    void operator()( int ip ) const ; // Required work operator

    // Input and output arrays for the operation:
    typedef MDArrayView< myValueType , device_type > myArrayType ;
    const myArrayType myInputA , myInputB , ... ;
    const myArrayType myOutputX , myOutputY , ... ;

    // Constructor copies views ("shallow copy") of input and output
    MyFunctor( const myArrayType & A , ... )
        : myInputA( A ), ... {}

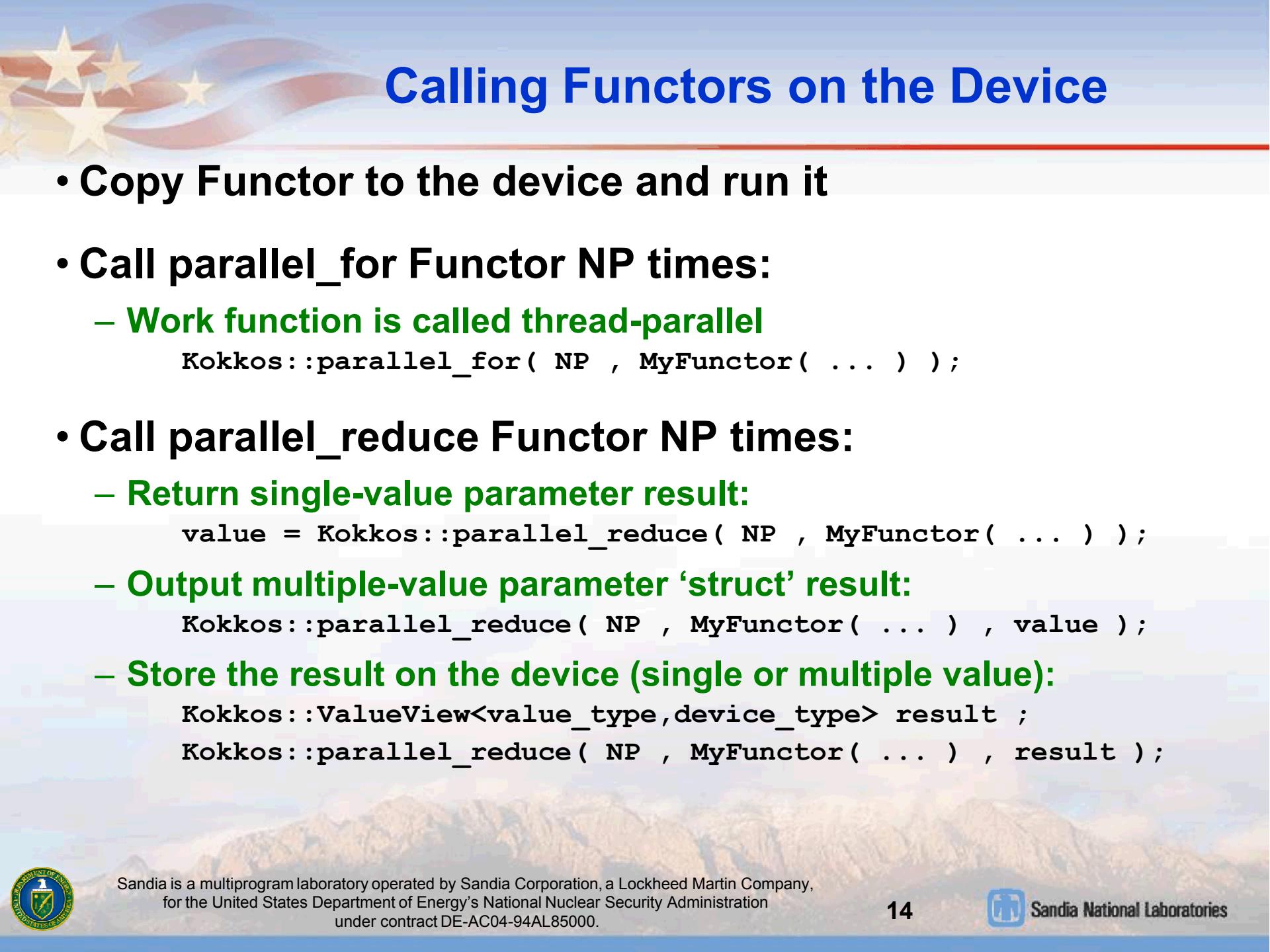
};
```

```
}
```


API Requirements For Users' Parallel-Reduce Functor

```
namespace MyNamespace {
template< class DeviceType > class MyFunctor {
public:
    typedef DeviceType device_type ;
    typedef ... value_type ; // Parameter type, could be a "struct"
    // Operator contributes to the update value
KOKKOS_MACRO_DEVICE_FUNCTION
    void operator()( int ip , value_type & update ) const ;
    // update = reduce_operation( update , input );
KOKKOS_MACRO_DEVICE_FUNCTION
    static void join( volatile           value_type & update ,
                      volatile const value_type & input );
    // Initialize to the "identity" value for the reduce_operation
KOKKOS_MACRO_DEVICE_FUNCTION
    static void init( value_type & output );
};

}
```



Calling Functors on the Device

- Copy Functor to the device and run it

- Call parallel_for Functor NP times:

- Work function is called thread-parallel

```
Kokkos::parallel_for( NP , MyFunctor( ... ) );
```

- Call parallel_reduce Functor NP times:

- Return single-value parameter result:

```
value = Kokkos::parallel_reduce( NP , MyFunctor( ... ) );
```

- Output multiple-value parameter ‘struct’ result:

```
Kokkos::parallel_reduce( NP , MyFunctor( ... ) , value );
```

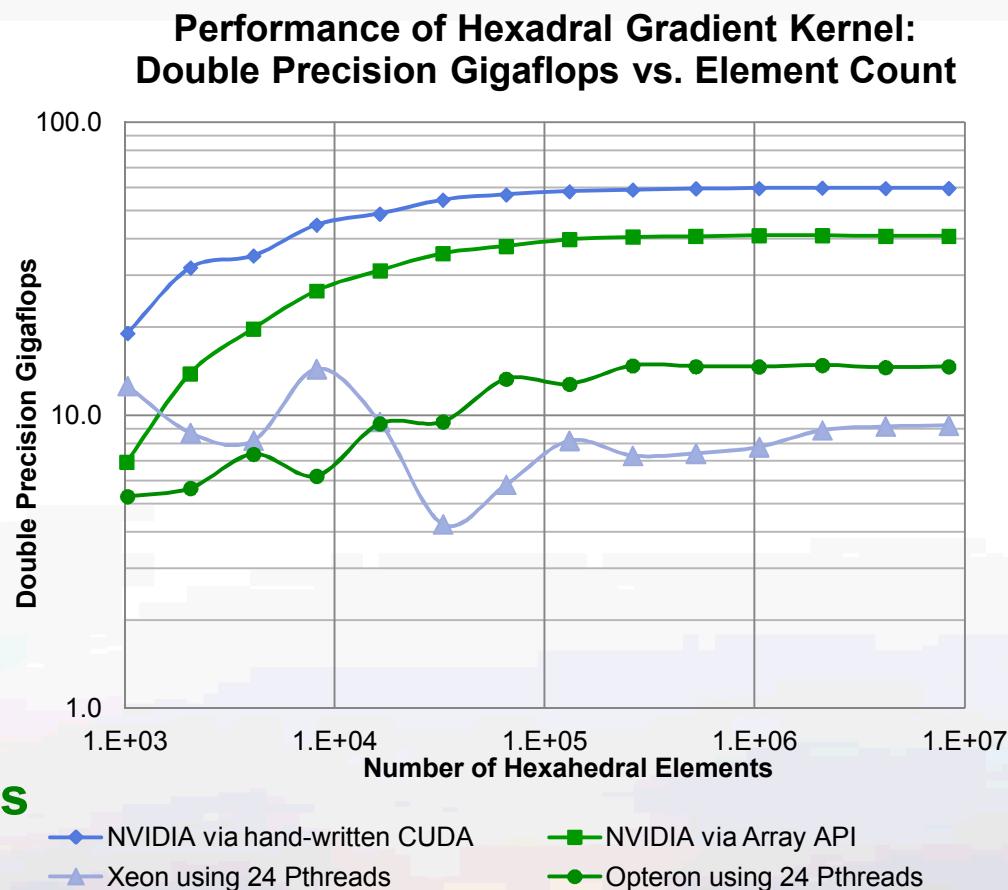
- Store the result on the device (single or multiple value):

```
Kokkos::ValueView<value_type,device_type> result ;
```

```
Kokkos::parallel_reduce( NP , MyFunctor( ... ) , result );
```


Performance Test Case #1: Parallel_For on Hexahedral Basis Gradient

- Finite Element Kernel
 - Input coordinates (NP,3,8)
 - Output gradients (NP,3,8)
 - Double precision
 - 6.6 flops per value access
 - Xeon: 2 x 6core x 2 HT
 - Opteron: 2 x 12core
 - NVIDIA C2070 (448 cores)
- vs. Hand-written CUDA
 - No in-code index-map
 - Hard-coded memory offsets
 - Within 20% performance



Performance Test Case #2: Gram-Schmidt Orthogonalization

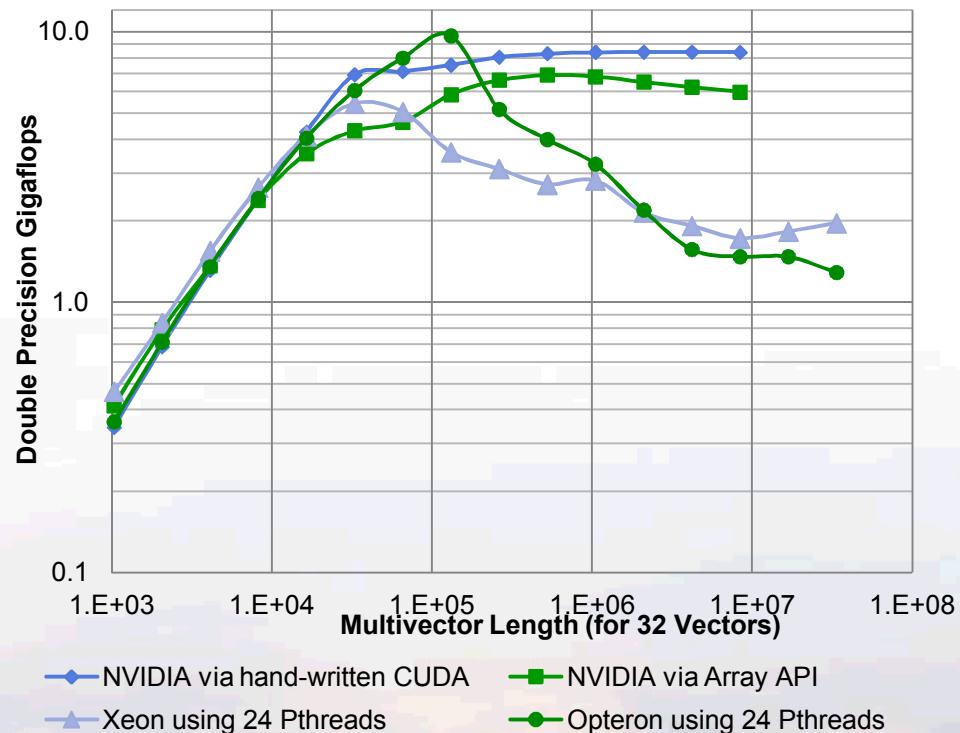
- Classical Algorithm

- sequence of parallel_for and parallel_reduce operations
- Double precision
- $2 * N * M^2$ flops ($M=32$)
- Xeon: 2 x 6core x 2 HT
- Opteron: 2 x 12core
- NVIDIA C2070 (448 cores)

- Minimize data exchange

- Launch sequence of functors on the device
- Leave and use reduction values on the device

Performance of Modified Gram-Schmidt:
Double Precision Gigaflops versus
Multivector Length (of 32 Vectors)



Conclusion & Plans

- Performance-portable multidimensional array programming model
 - Demonstrated on Xeon, Opteron, and NVIDIA
 - “Classical” multidimensional array data access interface
 - C++ templated on the device and the multi-index map
 - Choose map which is optimal for the device
 - Shared-ownership view semantics
- Plans
 - Other devices; e.g., Intel Knights Ferry
 - Evaluate with more complex kernels & mini-applications
 - Expand to multi-parallel-index arrays: grids, matrices
- Available: <http://trilinos.sandia.gov>