
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000.

Multicore/GPGPU Portable Computational
Kernels via Multidimensional Arrays

H. Carter Edwards / Sandia National Laboratories

Collaborators:

Daniel Sunderland, Vicki Porter, and Michael Heroux / Sandia National Labs

Chris Amsler / Kansas State University

Sam Mish / California State University

7th International Congress on Industrial and Applied Mathematics - ICIAM 2011

Vancouver, BC, Canada / July 18-22, 2011

SAND2011-4573C

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 1

Performance-Portable
Thread-Level Parallelism

• Portability with Performance is a Challenge
– CPU-Multicore and GPGPU-Manycore (e.g., NVIDIA)

– Language constraints (e.g., CUDA)

– Performance concerns: memory access patterns dominate

• Data Parallel Computational Kernels
– Defer task parallelism, pipeline parallelism, ...

– parallel_for and parallel_reduce semantics

• “Natural” Data Structures
– For scientific & engineering computations

– Multidimensional array (a la FORTRAN)

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 2

Trilinos’ Kokkos-Array Library

• An API and Library; Not a Compiler
– Computational kernels written in subset of C++ (CUDA v3.x)

– Computing on multidimensional arrays

– Running on a compute device

• CPU Multicore, NVIDIA GPGPU, Intel Knights Ferry

• Simple API
– Very simple C++ class API for multidimensional arrays

– Very simple “functor” pattern for computational kernels

– In the spirit of Intel’s Threaded Building Blocks (TBB) or Thrust

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 3

Abstractions

• Manycore Compute Device
– Provides many threads of execution

– Owns memory space accessible to and shared by those threads

– At most one device per process (MPI rank)

• Choice: for hybrid parallel programming simplicity

• Two levels: global (MPI) and local (data parallel)

• Multidimensional Array
– and multivector – a special case not covered in this presentation

• Partitioning and Mapping of Arrays onto a Device

• Data Parallel Computational Kernels

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 4

Abstraction: Multidimensional Array

• Homogeneous Collection of Data Members
– Mathematical, plain-old-data type (for now)

– Members reside in the memory space of a compute device

– Members referenced by a multi-index in a multi-index space

• Multi-index (i0 , i1 , i2 , …)
– Ordered list of indices of a simple integer type

– Rank – the number of indices

• Multi-index Space
– Cartesian product of integer ranges

• Kokkos array: [0 .. N0) x [0 .. N1) x [0 .. N2) x …

• Abbreviated as: (N0 , N1 , N2 , …)

– Cardinality = N0 * N1 * N2 * …

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 5

Abstraction: Mapping

• Multidimensional Array’s Map
– Bijective map : multi-index space  array data members

– [0 .. N0) x [0 .. N1) x [0 .. N2) x …  array data members

• Two Well-Known Examples
– Base location + offset into contiguous block of memory

– FORTRAN : (i0 – 1) + N0 * ((i1 – 1) + N1 * ((i2 – 1) + N2 * (…)))

– C : (…((((i0) * N1 + i1) * N2 + i2) * N3 + i3) * …)

• Key Concept: Choose the Optimal Map for a Device
– Multiple valid maps; your favorite map is not the only valid map

– Different devices may have different optimal maps

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 6

Abstraction: Parallel Partitioning

• Partition Data for Parallel Work
– Partition into NP atomic units of parallel work

– Multidimensional array (and multivector) index space has one
parallel work dimension: (NP , N1 , N2 , …)

– Matrices and Grids have multiple parallel work dimensions

• These are related but different abstractions

• Parallel Work via Computational Kernel
– Atomic unit of parallel work identified by index : ip  [0 .. NP)

– Computational kernel must

• Update only those array members with index (ip , * , * , …)

• Not query data being updated by different unit of work

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 7

Abstraction:
Data Parallel Computational Kernels

• “Parallel For” Kernel
– { } are shared parameters

– {X} and {Y} are sets of partitioned multidimensional arrays

– can be independently applied to each atomic unit of work

• “Parallel Reduce” Kernel
– {} are reduction parameters

– Each atomic unit of work contributes to parameters

– Contributions are reduced by a mathematically commutative
and associative function

      : ,f X Y 

f

         : , ,f X Y  

     :Rf ip ip   

           : , , , ,f X ip ip Y ip   

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 8

Kokkos::MDArrayView API
Multi-index Space and Data Access

namespace Kokkos {

template< typename ValueType ,

class DeviceType , class MapOption = ... >

class MDArrayView {

public:

// Query rank and dimensions of multi-index space

size_type rank() const ;

size_type dimension(irank) const ;

// Access data member on the device via its multi-index

KOKKOS_MACRO_DEVICE_FUNCTION

ValueType & operator()(iP , i1 , i2 , ...) const ;

};

}

• Index space known on the host and on the device

• Data members reside only on the device
– Data members only accessible on the device

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 9

Kokkos::MDArrayView API
Copy Array Member Data

namespace Kokkos {

template< typename ValueType ,

class DeviceDest ,

class MapDest ,

class DeviceSource ,

class MapSource >

void deep_copy(

const MDArrayView<ValueType,DeviceDest, MapDest> & dest ,

const MDArrayView<ValueType,DeviceSource,MapSource> & source);

}

• “Deep Copy” – Copy Member Data
– Between arrays on the same device or different devices

– Between arrays with the same map or different maps

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 10

Kokkos::MDArrayView API
Shared Ownership View Semantics

namespace Kokkos {

template< typename ValueType , class DeviceType , class MapOption >

class MDArrayView {

public:

MDArrayView(); // NULL view

// New view of same data viewed by RHS (a “shallow copy”)

MDArrayView(const MDArrayView & RHS);

// Clear this view: if the last view then deallocate member data

~MDArrayView();

// Clear this view and then assign to be a new view of RHS data

MDArrayView & operator = (const MDArrayView & RHS);

};

// Allocate a multidimensional array

template< typename ValueType , class DeviceType , class MapOption >

MDArrayView< ValueType , DeviceType , MapOption >

create_mdarray(NP , N1 , N2 , ...);

}

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 11

API Requirements: Users’ Functors

• Functor: work function + work data

– Work function is called thread-parallel

• Called NP times on up to NP different threads

– Work data reside on the compute device

– Work data are accessed through Views

• Functors are Passed by Value to the Compute Device

– Functor members are copied

– Copying a view is ‘shallow’ – the view is copied not the data

• Functors are Compiled for the Compute Device

– Work function is restricted: CUDA 3.x – a subset of C++

– NO memory management on the compute device

– Thread safety – only access ‘ip’ data members

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 12

API Requirements For Users’
Parallel-For Functor

namespace MyNamespace {

template< class DeviceType >

class MyFunctor {

public:

typedef DeviceType device_type ; // Required to identify device

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int ip) const ; // Required work operator

// Input and output arrays for the operation:

typedef MDArrayView< myValueType , device_type > myArrayType ;

const myArrayType myInputA , myInputB , ... ;

const myArrayType myOutputX , myOutputY , ... ;

// Constructor copies views (“shallow copy”) of input and output

MyFunctor(const myArrayType & A , ...)

: myInputA(A), ... {}

};

}

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 13

API Requirements For Users’
Parallel-Reduce Functor

namespace MyNamespace {

template< class DeviceType > class MyFunctor {

public:

typedef DeviceType device_type ;

typedef ... value_type ; // Parameter type, could be a “struct”

// Operator contributes to the update value

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int ip , value_type & update) const ;

// update = reduce_operation(update , input);

KOKKOS_MACRO_DEVICE_FUNCTION

static void join(volatile value_type & update ,

volatile const value_type & input);

// Initialize to the “identity” value for the reduce_operation

KOKKOS_MACRO_DEVICE_FUNCTION

static void init(value_type & output);

};

}

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 14

Calling Functors on the Device

• Copy Functor to the device and run it

• Call parallel_for Functor NP times:

– Work function is called thread-parallel
Kokkos::parallel_for(NP , MyFunctor(...));

• Call parallel_reduce Functor NP times:

– Return single-value parameter result:
value = Kokkos::parallel_reduce(NP , MyFunctor(...));

– Output multiple-value parameter ‘struct’ result:
Kokkos::parallel_reduce(NP , MyFunctor(...) , value);

– Store the result on the device (single or multiple value):
Kokkos::ValueView<value_type,device_type> result ;

Kokkos::parallel_reduce(NP , MyFunctor(...) , result);

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 15

Performance Test Case #1:
Parallel_For on Hexahedral Basis Gradient

• Finite Element Kernel
– Input coordinates (NP,3,8)

– Output gradients (NP,3,8)

– Double precision

– 6.6 flops per value access

– Xeon: 2 x 6core x 2 HT

– Opteron: 2 x 12core

– NVIDIA C2070 (448 cores)

• vs. Hand-written CUDA

– No in-code index-map

– Hard-coded memory offsets

– Within 20% performance

1.0

10.0

100.0

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07

D
o

u
b

le
 P

re
c

is
io

n
 G

ig
a

fl
o

p
s

Number of Hexahedral Elements

Performance of Hexadral Gradient Kernel:
Double Precision Gigaflops vs. Element Count

NVIDIA via hand-written CUDA NVIDIA via Array API

Xeon using 24 Pthreads Opteron using 24 Pthreads

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 16

Performance Test Case #2:
Gram-Schmidt Orthogonalization

• Classical Algorithm
– sequence of parallel_for and

parallel_reduce operations

– Double precision

– 2 * N * M^2 flops (M=32)

– Xeon: 2 x 6core x 2 HT

– Opteron: 2 x 12core

– NVIDIA C2070 (448 cores)

• Minimize data exchange

– Launch sequence of
functors on the device

– Leave and use reduction
values on the device

0.1

1.0

10.0

1.E+03 1.E+04 1.E+05 1.E+06 1.E+07 1.E+08

D
o

u
b

le
 P

re
c

is
io

n
 G

ig
a

fl
o

p
s

Multivector Length (for 32 Vectors)

Performance of Modified Gram-Schmidt:
Double Precision Gigaflops versus
Multivector Length (of 32 Vectors)

NVIDIA via hand-written CUDA NVIDIA via Array API

Xeon using 24 Pthreads Opteron using 24 Pthreads

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energy’s National Nuclear Security Administration

under contract DE-AC04-94AL85000. 17

Conclusion & Plans

• Performance-portable multidimensional array
programming model
– Demonstrated on Xeon, Opteron, and NVIDIA

– “Classical” multidimensional array data access interface

– C++ templated on the device and the multi-index map

• Choose map which is optimal for the device

– Shared-ownership view semantics

• Plans
– Other devices; e.g., Intel Knights Ferry

– Evaluate with more complex kernels & mini-applications

– Expand to multi-parallel-index arrays: grids, matrices

• Available: http://trilinos.sandia.gov

