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Value of Thermal Storage

Sioshanshi and Denholm, 2010, NREL-TP-6A2-45833

* Energy

« Allows generation to be shifted to higher priced hours

« Can reduce some efficiency loss by shifting generation to
hours with lower ambient temperatures

* Increases the use of thermal energy from the solar field

« Capacity

« Allows energy collected by the solar field to be used by

placing excess energy that would overload the power block
into thermal energy storage (TES) for future use

« Can similarly increase solar multiple to further increase
power block usage

« Ancillary services
* Regulation, spinning, non-spinning reserves

Sandia National Laboratories
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Storage for Parabolic Trough

» Replacement of working fluid with salt
* Increases operating temperature limit
* Increases AT through field

* Leads to more power production at
higher efficiency

» Direct storage reduces efficiency loss in
heat exchanger (over indirect)

* Implementation concern
* Freeze possibility
* Recovery from freeze event

Kearney et al., 2003, JSEE, 170-176
and
Kolb et al., 2010, ASME Energy Sustainability
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Freeze/Melt Test Facility
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Required solid-salt properties
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Tensile strength

ompressive strength

Young’s modulus

Poisson’s ratio
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ASTM D3967-08
Splitting tensile strength test
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Thermal Property Test Matrix

: Thermal
Salt Type Specific heat CTE conductivity
Solar salt [4, 5] o o o
T, , =221 °C 0to325°C 30t0200°C 30to35°C
HITEC [6] o o o
T . =142°C 0to250°C 30to120°C 30to35°C
Quaternary [7] o o
T, =90 °C 50to 250 °C  30to 75°C n/a
NaNO, 60% 7% 12.1%
KNO, 40% 53% 42.3%
NaNO, - 40% -
Ca(NO;), - - 39.4%
LiNO, - - 6.1%

Sandia National Laboratories

Weight percent %




Temperature in °C

» Allows for direct measurement of the specific
heat capacity instead of requiring an indirect
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Specific Heat using Calorimetry
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Method yields both heat capacity and heat

flow.

comparison with a standard material.

Schawe et al., 2005, UserCom 22, Mettler-Toledo

Schawe ef al., 2006, Thermochimica Acta
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TOPEM: Temperature modulated differential
scanning calorimetry (TMDSC)

* The samples were subjected to a linear
temperature-increase rate with a superimposed
stochastic modulated temperature fluctuation.

» Based on the frequency response of the heat flow
profile, the heat capacity can be obtained from the
sample.
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Specific Heat

Curves through 100 °C above melt
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 Light intensity indicates
amount of solid-phase

« Lighter colors indicate less
light passage due to the
presence of the solid-
phase.

« Temperature ranges from
25-245 °C.

« Transition to melt visually
observed for quaternary
salt

Sandia National Laboratories
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CTE

» Follows ASTM standard E228

« Parts cast at room temperature and cut to length

+ Heated to 90% of the melt temperature and cooled

* Expansion recorded with linear displacement transducers
» Two tests per salt type on different samples

"

Courtesy Harrop du_sfries

-
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« Data points are taken at 0.1-0.2 °C increments with error values of <0.05% in
length change and 1 °C in temperature.

* Ramp rate of 3 °C/min

« Trend lines are generated using all data points from the heating or cooling
regions.
« CTE 30+% higher than naturally occurring Halite (NaCl)
Sandia National Laboratories 12
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Trend lines are generated using all data from 28-42 °C,
consistent with observed melt transition from DSC Cp
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Thermal Conductivity
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Thermal Conductivity
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Thermal Conductivity
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Conclusions

» Solid-phase thermal properties for three salt compositions were obtained
Specific heat
Coefficient of thermal expansion
Thermal conductivity

« Quaternary salt (with relatively high Ca(NO,), concentration) exhibits glass-
like behavior and has a temperature range over which melting occurs; off-
eutectic

« CTE for Solar and HITEC salt 30+% higher than naturally occurring Halite

« Combined with mechanical property data, recovery from solidification can be
modeled.

Sandia National Laboratories 17



Future Work

« Measurements and analysis of tube deflection
for various tube and heating conditions

« Study impact on solar intercept
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