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Blast-Induced Traumatic Brain Injury (TBI)
Background

» Closed-Head Blast Injuries are leading cause of traumatic brain injury
(TBI) in military personnel returning from combat [1,2]

— Latest statistics show 267,000 US warfighters sustained TBI
— 69% as a result of IED blast exposure in Iraq & Afghanistan

« Sandia Focus: Primary Blast Injury (caused by direct blast exposure)
— Investigate early-time wave mechanics leading to localized brain injury

— Previous work suggests shear stress & deviatoric shear energy correlate with
localized brain injury identified in clinical TBI study

— Separate work suggests intracranial cavitation may also cause brain injury

» Research Approach:

— Develop Equation-of-State (EOS) model to capture cavitation phenomena in
water & water-bearing soft tissue
— Conduct macroscale simulations of blast exposure using Cavitation EOS
« |dentify local hydrodynamic conditions that give rise to intracranial cavitation
« Identify specific brain regions experiencing cavitation phenomenon

— Create micromechanical models to investigate details of cavitation-induced

damage
[1] Defense & Veterans Brain Injury Center TBI numbers: DoD numbers for traumatic brain injury, 2010. San_dia
[2] Fischer, H., 2007, United States Military Casualty Statistics: Operation Iragi Freedom and Operation National
2 Enduring Freedom, Congressional Research Service Report RS22452. Laboratories
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" TBI Macroscale Modeling & Simulation
Head-Neck Model

 Finite volume model developed from Visible Human Project [3] data
— Constructed from 256 1mm-thick, axial anatomical slices of human male

from the VHP
— Anatomically correct distributions of white & gray brain matter, cerebral
spinal fluid, bone, falx & tentorium

Full Model
Images:

Model Size:
5.9M Cells
Coronal, Axial,
& Sagittal Cuts:
[3] National Institutes of Health, 2007, “The Visible Human Project,” National Library of Medicine .
http://www.nIm.nih.gov/research/visible/visible_human.html @ ﬁggglr?al
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© TBI Macroscale Modeling & Simulation
Constitutive Models

* Biological Materials:

— White & Gray Matter — Mie-Gruneisen EOS, Viscoelastic models [4]
 M-G EOS being replaced by Tillotson-Brundage Cavitation EOS [5]

— Bone - Linear Elastic model w/ Fracture [4,6]
— Falx & Tentorium (membranes) —Elastic models [4]
— Muscle & Scalp - Elastic models [4,7]

— Cerebral Spinal Fluid (CSF) — Mie-Gruneisen EOS
» Being replaced by Tillotson-Brundage Cavitation EOS

— Sinus Air (and surrounding air) - Non-linear Compressible EOS

[4] Zhang, L., Yang, K.H., & King, A.l., 2001, “Comparison of Brain Responses between Frontal and Lateral
Impacts by Finite Element Modeling,” J. Neurotrauma 18(1), pp. 21-30.

[5] Brundage, A. L., 2013, “Prediction of Shock-Induced Cavitation in Water,” Proc. 2013 APS Shock
Compression of Condensed Matter, Seattle, WA.

[6] Carter, D.R., 1985, “Biomechanics of Bone,” Biomechanics of Trauma, Appleton-Century-Crofts,
Norwalk, CT, pp. 135-165.

[7] Mak, A.F.T. & Zhang, M., 1998, “Skin and Muscle,” in Handbook of Biomaterial Properties, ed. J. Black
& G. Hastings, Chapman & Hall, London, pp. 66-69.
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Modeling & Simulation
Methodology & Validation

e Simulation Methods
— Eulerian methods using CTH (w/ finite volume model)
» Blast, Projectile Penetration
— Lagrangian methods using Presto (w/ finite element model)
» Blunt Impact, Imposed kinematic conditions (e.g. acceleration)

— Lagrangian-Eulerian coupled methods using Presto/CTH
(w/ finite element model)

» Blast (greater accuracy than Eulerian description)

» Head/Neck Model Validation

— Compared Simulation predictions with laboratory data

* Magnetic Resonance Tagging & Elastography data on the
human head (in vivo) courtesy of Prof. Philip Bayly research
team, Washington University at St. Louis, MO USA [8,9]

[8] Sabet A.A., Christoforou E., Zatlin B., Genin, G.M., Bayly, P.V., 2008, “Deformation of the Human Brain
by Mild Angular Head Acceleration,” J. Biomech., 41, pp. 307-315.
[9] Feng Y., Abney T.M., Okamoto R.J., Pless R.B., Genin G.M., Bayly P.V., 2010, “Relative Brain Displacement
and Deformation during Constrained Mild Frontal Head Impact,” J. Roy. Soc. Interface, 7(53), pp. 1677-1688.
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TBI Modeling & Simulation

Example: 3.6 bar (360 KPa) Blast

Snap-Shot Images of Blast-Induced Pressure Wave Propagating through Head
Time ~ 130 us after blast wave encounters head
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TBI Modeling & Simulation
3.6 bar Frontal Blast Exposure: Compressive Pressure & Energy

Max Pressure & Isotropic Compressive Energy (ICE) associated with Crush
* No known correlation with local tissue injury

ICE = Pos| j Pd—p]
Yo,

MPa Max Compressive Pressure Max Isotropic Compressive Energy

1.0 I

J/m3

I 300

0.1 1
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TBI Modeling & Simulation
3.6 bar Frontal Blast Exposure: Tensile Pressure & Energy

Max Tensile Pressure & Isotropic Tensile Energy (ITE) associated with
volumetric Dilatation & possibly Cavitation dp
e Suspected tissue injury mechanism ITE = Neg[_[P—]

Jo,

Max Tensile Pressure Max Isotropic Tensile Energy
KPa J/m3

-200 I r I-ZOO
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TBI Modeling & Simulation
3.6 bar Frontal Blast Exposure: Deviatoric (Shear) Stress & Energy

Max Deviatoric Stress & Energy (DSE) associated with Shear & Tearing
o Suspected tissue injury mechanism

o Cytoskeleton disruption & membrane rupture
DSE = j tr(Sd)at

<Pa Max Deviatoric Stress Max Deviatoric Energy 3/m?3

20 I I 300

0.1 1
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Blast-Induced TBI Research Summary

e Completed Work:

» Combined simulation & clinical study of TBI blast subjects
suggest possible correlation [10]

— Between maximum deviatoric (shear) stress & energy with local
regions of brain hypoactivity in TBI subjects

— Simulation predictions also show localized regions in brain
experiencing elevated levels of tensile pressure and energy

» Possible Cavitation
— Cavitation hypothesized to cause local injury leading to TBI [11-13]

» Collapse of bubbles formed in fluid cause local shock wavelets that
could damage surrounding tissue

— Need exists to model intracranial cavitation in simulations

[10] Taylor P.A., Ludwigsen J.S., Vakhtin A.A., Ford C.C., 2013, “Simulation and Clinical Assessment of Blast-Induced
Traumatic Brain Injury,” Neurotrauma Letter, submitted.

[11] Lubock P., Goldsmith W., 1980, “Experimental Cavitation Studies in a Model Head-Neck System, J. Biomech. 13,
pp. 1041-1052.

[12] Brennen C.E., 2003, “Cavitation in Biological and Bioengineering Contexts,” Proc. 5 Int. Symp. Cavitation, Osaka,
Japan.

[13] Nakagawa A., Fujimura M., Kato K., Okuyama H., Hashimoto T., Takayama K., Tominaga T., 2008, “Shock Wave,

Induced Brain Injury in Rat: Novel Traumatic Brain Injury Animal Model, Acta Neurochir. Supp. 102, pp.421-424.@ ﬁgﬁgﬁm
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Tillotson-Brundage Cavitation EOS Model
Cavitation Description

* Manifests as individual
vapor bubbles or large
(steady or unsteady)
cavities that contain air or
water vapor; both can
quickly cause damage
(and noise) upon collapse

e Occurs locally from
release to pressures near
vapor pressure of liquid
(boiling at ambient T)

* Represents a two-phase
flow comprising of the
liquid and its vapor (or
other dissolved gasses)
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Understanding Water “Stretch™  w»———+—+————

150 Metastable liquid Stable liquid
o Stable pressure state in fluids is positive g | ' )
* If the local pressure drops below vapor 2
pressure, fluid cavitates g - ‘
« Experimental research demonstrates that water & ™[ " 1
can “stretch” in a metastable state and sustain 1460 - 1
negative pressures before cavitation wal 7 |
« New EOS permits fluid to stretch to metastable s w0 e Tom T oo ot
states (negative pressures) P < Pcav; then fluid Densly (kghm)

returns to stable (positive) vapor pressure

* Modeling approach consistent with experimental
evidence of vapor bubbles appearing once
P<Pcav

“t P, =-28.7 MPa ]

cav —

@ T,=23.3C

Pressure (MPa)

T R R
*Davitt et al. , J. Chem. Phys. 133, 174507 (2010) Density (kgim’) @ Sandia
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Tillotson-Brundage EOS Development&.c.d.e

aTillotson , General Atomic Report GA-3216, (1962) Whlpple Shield l Phb
bAnderson et al., Int. J. Imp. Engrg. 9, (1990) 7 7 o
cAhrens & O’Keefe, Int. J. Imp. Engng. 5, (1987) M/OD ‘; ?
dAhrens & O’Keefe, Imp. and Explosion Cratering (1977) Vv ? ?
eBrundage, Procedia Engng (2012) _/‘_' 7 %
d t —>?<— L —»?
7, v

« Two-phase,Tillotson EOS meant to capture
vaporization upon release for hypervelocity
Impacts? of metals

« Single equation for compression (p 2 p,) and
different one for expansion (p < p,)

* No polymorphic phase transformations
Key Model Revisions by Brundage
e Filled gaps in p - E space
— Added new tensile regions ™)
— Significant updates to expansion region® ..
« Cavitation model added for liquids® o

13 VOLUME
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New EOS for Shock-loaded Metastable Fluids

-

» Extend Tillotson EOS to
capture tension and cavitation
in fluids

« EOS fit to general form in
compression, expansion, and
tension

P(p,E)=|a+ ETE, pE + f(p)

(,0/ %) )2

Pressure, P (kbar)

0.5
EXPANSION COMPRESSION

0.4 -

0.3

0.2 Stable

Liquid
0.1
0 e — — e e e s e e s s et el e e e e e
0.1
Metastable
-0.2 — Liquid
-0.3
-04
_0-5 L] L]
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Shock Hugoniot Results

 Compare shock end states to available data o | iR
» Modified Tillotson, MGR, and SESAME EOS i SR
. . _ e00 A A Walsh & Rice
EOS surface in compression .
— 5 %m |
Plp.E)=a+ - - ]ﬁE+Aﬂ+EﬂE (0= py. EZ0) 2
Assume end states in thermodynamic 100 -
equilibrium: E=E,,, P=P, G = x =
o 11 a,b,E,,A,B adjusted 6000 o
‘EH l:P:I = :PH [-'ﬂ - for best fit to data s TH Tillotsan EQS
A PD Q0 5000 - —CTH Mie Gruneisen EQS
= TH SESAME 7150 EQS
SOIVe for P y TH % o :It-l::;:irut:mmteﬂeﬂhaw
— by + 'II;EIE +4agc ] Eulp)-E-(p) \ :.E,
Pylp)=—2= ”{'H EH Thp)=Tp+ alp)-Ecle oz po) ¢
Z{TH CI'
dE~ Plo.E-)
c _PREC) (4t 5o py. B¢ =0) u
15 dp fo 1 15 2 25

Density, p (g/cm?)
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Cavitation Model Testing

» Cavitation process is ‘liquid spall’ where water in metastable tensile
state ruptures

» Evaluate w/1D computational spall experiment
» At spall plane, model produces vapor at stable P

vapor

I S , : Time = 20ps : : ‘ Time = 400 us ' ] . | Time =I44.0 |.rsl
: Spall 25 | 1207 |
! Plane 1 2f |
K- ﬂ/ t o= Lpe— 2L —— = L—w1L spa -
_ : >t 1% 0.05 bar% ~ J
L -~ 21— %2 s 4 5 6 7 s 3 4 5 3 4 - érA'l 7 8
X (cm) X {em) X (cm)
K?v Parameters Impact Spall Cavitation
u=40cm/s Plane Plane
L=2cm
P = 2.95 bar (calc) Tillotson-Brundage EOS Results

Pvap = 0.05 bar @ Sandia
National

Laboratories
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Evaluate new EQOS surface for tension with water data

0.00E+00

» Mie-Gruneisen (MGR) EOS in CTH, soopy IR0

-#-CTH MGR Tension

previously used to model biological el .

materials .
e In tension, MGR EOS underpredicts
tensile stress state in water and has

wrong trend in sound speed
 New model for all materials fits pressure s

0.975 0.98 0.985 0.99 0.995 1

data for water but underpredicts sound pein
speed, although gets correct trend

151000

150000

149000 + Raw Data, Davitt et al.
(2010)

"E- —Polynomial Fit, Davitt et
< 148000 al (2010)
. Tillotson Tension
3
& 147000 —CTH MGR Tension
¥
=
£ 146000
-]
W
145000
144000 /
143000

142000 San_dla
0975 098 0985 099 0995 1 National .
1 7 density, g/cc I-abﬂlatones
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| Tillotson-Brundage Cavitation EOS Development |

Summary

* New EOS for water captures realistic physics of metastable stretching
before cavitating at stable vapor state

* Revised EOS development required adding tensile region for water (or
water-like material)

» Generalize EOS in tension for fluidized soft tissue in human body
* Improvement in prediction of tensile states

* Models are being implemented in Sandia Shockwave Physics codes
— CTH (Eulerian description)
— Coupled CTH-PRESTO (Eulerian-Lagrangian description)

@ Sandia
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Blast-Induced TBI Research Summary

e Current Work:
— Conduct macroscale simulations of blast scenarios leading to TBI
« Employ Brundage-Tillotson EOS to model cavitation in brain & CSF
— Identify intracranial regions experiencing cavitation
» Parameterize local hydrodynamic conditions associated with cavitation
» Future Work:

— Develop micromechanical models of those regions in brain that
experience cavitation

— Investigate details of brain tissue damage on microscale using
hydrodynamic conditions defined from macroscale simulations

Questions?

@ Sandia
National
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TBI Modeling & Simulation
3.6 bar Frontal Blast Exposure: mid-Sagittal Plane

Pressure at 0.00e+00 sec Eff. Stress at 0.00e+00 sec
Pressure —_— Effective Stress
S TR S SR O TR S SR A S PSR S R R L T B o e e e B B e e Bl e o e B
30 30 F
25 25 F
20 20
15 15 |
10 10
10°
5 5F
0 o5 5 | N 0 i | | Fib. Ui
-10 0 30 -10 0 30
Note: Run Videos Simultaneously
Sandia
National
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TBI Modeling & Simulation

3.6 bar Frontal Blast Exposure: Axial Plane above Eyes

Pressure at 0.00e+00 sec

Pressure P (kPa)
T I I E S L S B R (R B D I
0 —
5 all
10 —j* 10
15 |
. 1
: 10°
25 ] 25
I e o e e T 30
50 0 10 20 30
Y (cm)

22

Effective Stress at 0.00e+00 sec

15 [

20 |

Effective Stress 5 (Pa)

10
T T T T T T _l

10

0 10 20 30

Note: Run Videos Simultaneously
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S Current SESAME EOS inadequate

-/ mme_Impact Conditions
— /’/ u=40cm/s
’ L=2cm
P =2.95 bar (calc) I

;—L-{ *—ét—-{ _Time - 204 T\me=IB.1 s Time =503 ps
4l -— --‘_l‘ 4r ' ‘ ,‘l\" ‘ - Oh--‘qf—! .
~ [/ e \ ]
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’ T R | :] Sandia

S R i e f o :m National
23 T R sl T Laboratories

X (cm) X(em)



Terminal Ballistics Technology

"y, -
— ,,_-:_:" =

Cavitation Processes on Phase Diagram

At spall plane, release to vapor pressure at lower velocities
* Prompt vaporization at hypervelocity impacts

1000
, 100 4 Liquin/
: Spall 10 - s |
' Plane CRITICAL
| - 1 A1 |
u | = POINT
—_— / % - /—’.‘\ E
| g z
| 5 0.01 - S
! g SATURATED | 2
| & 0.001 A LIQUID/VAPOR
I L = 0.0001 -
L 2L 1 CAVITATION /"C}
0.00001 A
Key Parameters e - ; .
u=2, 3, 8km/s Density, p (g/cm’)
L=2cm Water Phase Diagram

P\ apor = 0-05 bar
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