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Public policy seeks to influence complex natural, social, and engineered systems to achieve 

desired outcomes. Effective public policies are those which combine good outcomes with high 

reliability such that their choice is robust to a wide range of possible uncertainties. Modeling 

these complex systems and their potential response to proposed policies can provide decision-

makers with an objective basis for policy design. Critical to this design process is the 

development of rigorous methods to evaluate and rank modeled policy effectiveness in context 

of model uncertainty. 

A peer-reviewed complex system model of pandemic influenza propagation is used 

in a test case to illustrate the power of uncertainty-based public policy ranking. The networked-

agent model calculates the effects of both social network-based community mitigation 

practices such as school closure and social distancing, and individually-based treatment options 

such as antiviral treatment and vaccination. A proposed uncertainty-based methodology is 

described. The roles of experimental design, input factor representation, and sensitivity 

analysis methodology illustrate a succinct methodology to rank pandemic disease control 

options. A combination of space-filling experimental designs, modeling policy options as 

continuous rather than categorical variables, and treed Gaussian process and polynomial chaos 
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expansion-based sensitivity analysis are projected to yield a straightforward ranking of policy 

options that is robust to the identified aleatory and epistemic model uncertainties. These 

methods should have the additional advantage of requiring relatively few model runs to 

achieve a consistent and defensible ranking. Phase I of the experimental work to demonstrate 

the proposed uncertainty-based methodology is outlined. This early work indicates that 

analysis of published modeling results can generate a robust composite ranking of public 

policy options for mitigation of pandemic influenza.  

1   Introduction 

Many domains of public policy are well represented as Complex Adaptive Systems 

of Systems (CASoS), including social organizations, economies, and governmental 

bodies. Modeling of public policy options and tradeoffs as Complex Adaptive 

Systems (CASs) has shown promise recently in understanding the structure and 

dynamics of these systems with the goal of improving the quality and reliability of 

public policy decisions. Often modeling of CASs results in some increased 

understanding of the problem space, but little in the way of objective guidance for 

decision makers on how best to formulate policies and regulations to guide the 

systems in socially beneficial directions.  

Computational models of CASoS permit exploration of a wide range of 

possible policy options. High Performance Computing (HPC) enables models to be 

run many thousands of times with different input values. Analysis of the model 

outputs generated from these suites of runs can provide guidance on how systems 

behave under different policy regimes. Vast amounts of data generated by these 

supercomputer deployments can be challenging to interpret. However, automated 

data reduction eventually provides estimates of possible system responses to policy 

changes. 

Simple evaluation of CASoS models across a range of inputs provides much 

needed information to decision makers, but ignores one of their major concerns. 

Policy decisions not only consider the projected end point of the policy 

implementation, but also must consider risk. Few policy makers would choose a 

prospective policy which promises very good quantitative outcomes, but is likely, if it 

should fail, to fail with catastrophic consequences. CASoS-based social, technical, 

and governmental systems and models used for their analysis are fraught with 

massive uncertainties. An ideal policy choice is one which performs well under a 

wide range of uncertainties. Such a policy would be expected to have positive 

outcomes, but perhaps more importantly, to also have a low risk of catastrophic 

failure. 

Methods from the field of uncertainty quantification can provide the 

information needed to classify potential public policy options based on both their 

outcomes and their risk of failure. These powerful techniques enable researchers to 

identify, categorize and manage model and system uncertainty from many sources. 

Such uncertainty estimates permit ranking of policies not only by objective 

quantitative performance metrics, but also by their robustness to unforeseen events. 

While these methods do not yield verifiable predictions of policy outcomes, the 



combination of modeling-derived metrics, and uncertainty-derived reliability 

estimates permits methodical ranking of policy options. 

2   Overview of Uncertainty Analysis 

Uncertainty analysis of model results provides quantitative estimates of the quality of 

computed model outputs. Sensitivity analysis identifies which model outputs are most 

responsive to uncertain inputs. Factor sensitivities combine with knowledge of model 

structure and dynamics to generate realistic estimates of total uncertainty in model 

outputs. 

2.1   Uncertainty 

Uncertainty is simply a lack of certainty about a process, a quantity, or the state of a 

system. Uncertainty can apply to past and present events, but is most often ascribed 

to unknowable future events. While uncertainty is often interpreted as an undesirable 

property about a system, uncertainty also admits possibilities for advantageous events 

and innovations. Risk is a term that is often applied to uncertain situations or 

conditions; here we consider risk to represent undesirable states of uncertainty with 

implicit or explicit potential for significant loss.  

Computer models exhibit a range of uncertainty types [Helton et al. 2007]. 

Lack of knowledge about true values for input parameters used for modeling runs is 

termed parametric uncertainty. Since research or expert opinion can often narrow 

down the certainty with which input parameters are known, parametric uncertainty is 

often termed reducible uncertainty. Stochastic uncertainty results from an inability to 

forecast future events, such as wind direction next Tuesday, which may be implicit 

within a computer model. Structural uncertainty is a measure of how close a model 

captures the system of interest. Models constructed with incorrect mathematical 

formulations or insufficient detail may be poor analogs of real systems and thus have 

high structural uncertainty. An alternative categorization for uncertainty terms both 

structural uncertainty and parametric uncertainty as epistemic uncertainty, since they 

both arise from a lack of knowledge about values and processes. Stochastic 

uncertainty, on the other hand, captures fundamental inability to specify future events 

and is often termed aleatory uncertainty.  

2.2   Design of Experiments 

Using models to evaluate public policy options requires that they be run in a 

methodical manner that is focused on the issues at hand. Design of Experiments 

(DOE) entails planning model runs and parameter variations to answer a question 

adequately and efficiently [Santner et al. 2010]. DOE has long been a staple of bench 

research; a wide variety of methods and techniques have been developed to address 

cumulative measurement errors and other complications affecting hands-on 

experimentation. Computer experiments differ from bench experiments in that 

models can be configured to run deterministically and produce the exact same output 

for a given input without the variability seen in traditional experiments. Thus, many 



of the experimental designs developed for bench experiments are not appropriate for 

computer models. Rather than exposing measurement variation within experiments, 

designs for computational experiments focus on efficiently covering the 

multidimensional space of parameters adequately. Space filling designs ensure that 

parameter space is adequately sampled, and is the design of choice for uncertainty 

analysis using computer models. 

2.3   Sensitivity Analysis 

Sensitivity Analysis (SA) apportions variability in the output of a computer model to 

uncertainties in the constituent model inputs [Saltelli et al 2008]. As such, SA is a 

foundational method for understanding and measuring parametric uncertainty. 

Sensitivity analysis generates metrics termed Sensitivity Indices for each parametric 

input for a model which represents the impact that that parameter has on the value of 

the model output. These sensitivity indices are valuable for determining how best to 

decrease uncertainty in a model. Parameters with small sensitivity indices have very 

small effect on the output values; thus, effort to reduce uncertainty associated with 

those parameters may not translate to substantially decreased output uncertainty. 

Efforts to measure or generate more certain parameter estimates would be better 

spent on inputs having large sensitivity indices. Refining these parameter values 

would be expected to greatly improve overall model uncertainty. 

 Sensitivity Analyses fall into two broad categories, univariate and 

multivariate. Univariate methods are more intuitive to execute and interpret, whereas 

multivariate methods provide more information.  

 Univariate SA methods involve running the computer model many times 

with all inputs but one staying fixed. The effect of the single varying input parameter 

on the final output value is then plotted in a simple scatterplot. This method provides 

a wealth of information on general trends within models due to individual inputs. 

However, non-additive effects from combinations of inputs cannot be resolved with 

these simple tools.  

 Multivariate SA techniques methodically vary all inputs for each computer 

runs and rely upon sophisticated mathematical procedures to compute sensitivity 

indices. Techniques such as the Sobol method can generate accurate estimates the 

relative contributions of each input, but can require enormous numbers of model runs 

to generate the needed information. In contrast meta-models or surrogate models use 

fewer runs to generate a representative response surface for the model. The response 

surface is in turn used for detailed sensitivity analysis calculations [Storlie et al. 

2009]. 

2.4   Uncertainty Quantification 

Determining the sources of uncertainty and tracing effects of uncertainty throughout a 

model is termed uncertainty quantification (UQ) [Helton et al. 2007]. Each uncertain 

parameter is investigated to determine which distribution most accurately captures 

the possible values for the input. Similarly, each source of stochastic uncertainty is 

rigorously identified and its effects determined. The combined effects of these 



carefully estimated uncertainties are traced through to determine their possible effects 

on output uncertainty. Combined nested loop Monte Carlo model execution protocols 

permit concerted calculation of combined effects of epistemic and aleatory 

uncertainties. Results of these analyses are traditionally presented in horse-tail plots 

wherein individual time histories of many runs are plotted on a common set of axes.  

2.4   Decision Analysis 

Once the potential effects of uncertainty are measured and apportioned by various SA 

and UQ methods, policy options represented as parameter settings are analyzed to 

find the most advantageous combinations. Often simple visual inspection of model 

performance verses variability allows the most robust and effective policy to be 

immediately determined. For more involved models, optimization and search 

methods can be used o find the options which best combine objective performance 

and low susceptibility to unforeseen circumstances. 

3   Applying the Methods 

We re-examine the published findings of a peer-reviewed complex system model to 

demonstrate the potential applicability of uncertainty analysis on public policy 

decision making. Davey et al. [Davey 2008] used an agent based model of disease 

propagation through a stylized community to evaluate prevention and mitigation of 

pandemic influenza. This investigation investigated the effects of a range mitigation 

strategies or policies on the severity and duration of epidemic outbreaks. Many 

different parametric combinations were fed into the disease propagation model to 

determine the interventions which were most likely to reduce illness, death and 

economic cost. 

This study will examine the data which was generated by the Davey 

investigation to determine whether additional uncertainty-based methods and 

analyses could refine the published findings. The present study is organized into four 

distinct sequential phases: 

1. Applying additional analyses to the data generated by Davey et al. 

2. Running the Davey model using different experimental designs 

3. Modifying the Davey model to make it more amenable to advanced analyses 

4. Applying quantitative decision analytical methods to model data to 

rigorously rank policy options. 

This paper presents some initial results from Phase 1 of the extended project. 

3.1   Model Description 

Loki-Infect is a networked agent-based computational model developed by the 

National Infrastructure Simulation and Analysis Center (NISAC) at Sandia National 

Laboratories. In this model, agents represent individuals of various age classes who 

are linked to each other within and among social groups (such as households, 



neighborhoods, school classes, clubs, businesses, etc.) to form an explicit contact 

network reflective of a multiply-overlapping, structured community. Behavioral rules 

for individuals, their interactions, and the performance of network links are specified 

to model the spread of influenza. Community mitigation strategies are implemented 

through modifications of these behavioral rules when a given strategy is imposed 

during a simulation. Intervention strategies are listed in Table 1 

Table 1: Intervention Strategies 

Category Symbol Intervention 

Network-Based S Schools closed. 

Network-Based C  Social distancing of children and teenagers. 

Network-Based A Social distancing of adults and seniors. 

Case-Based Q Household quarantine. 

Case-Based T Antiviral treatment.  

Case-Based P Household member antiviral prophylaxis. 

Case-Based E Extended contact prophylaxis 

 

Davey et al. ran the model for a wide range of compliance values, disease infectivity 

values, mitigation initiation and cessation times for combinations of intervention 

strategies. The model was run 100 times for each set of distinct input parameters to 

explore effectiveness of disease containment across different randomly generated 

community social networks. The model was run over 2,000,000 times to fully cover 

the parameter space.  

Model results were presented in a series of crosstab tables which showed the 

mean number of infected people for each combination of intervention strategies. A 

small portion of a crosstab from the original study is reproduced as Table 2. 

Table 2: Example model run results. Cell values represent mean number of infected 

people from 100 runs. Infectivity=0.75, Compliance=90% 

 None A C C,A S S, A S,C S,C,A 

None 2780 1872 1111 624 221 207 124 119 

T 1560 765 373 241 164 150 122 117 

Q 984 562 267 237 178 151 125 141 

P 711 379 217 184 161 138 114 123 

Q,T 600 324 218 159 140 132 119 120 

Q,P 329 298 166 160 148 129 121 130 

E 251 208 149 150 146 134 106 111 

Q,E 267 187 138 145 122 117 104 108 



2.2 Data Analysis 

Standard statistical techniques can extract useful information from the data set shown 

in Table 1. Davey et al. looked at a range of variables affecting intervention 

implementation that are not represented in the simplified data subset shown in Table 

2. However, this subset serves well to illustrate potentially useful methods.  

Mean counts of infected people shown in the cells of Table 2 clearly are 

greatest in the upper-left corner and decrease regularly to a minimum in the lower left 

corner. This corresponds to large numbers of infected individuals in cells 

representing few or no interventions grading to fewer infected persons in cells 

representing layered strategies of many interventions applied in concert. However, it 

is not clear from Table 2 exactly which interventions are demonstrably superior to 

others. Recall that the cell values in Table 2 are mean values from 100 individual 

model runs.  

Analysis of Variance (ANOVA) of data matching corresponding to the 

values shown in Table 2 indicates which interventions can be clearly differentiated 

from others based on their mean efficacy at preventing influenza infection. Table 3 

summarizes ANOVA results from a synthetic data set matching the mean values 

shown in Table 2 and corresponding standard deviation values quoted in the by 

Davey et al. Table 3 shows that the data represent six groups of significantly different 

mean values. Five distinct groups exist in the upper left of the table indicating 

treatments which result in mean infected counts of greater than 500, while all 

interventions resulting in less than 500 mean infected represent a single group which 

cannon be resolved into smaller sub-groups at 95% confidence. These findings may 

be overly optimistic; ANOVA only strictly applies when the distributions of the 

individual means is approximately Gaussian, which is unlikely in this case.  

Table 3: ANOVA Results. Cell colors indicates clusters of mean values which are 

significantly different from others at 95% confidence 

 None A C C,A S S, A S,C S,C,A 

None 2780 1872 1111 624 221 207 124 119 

T 1560 765 373 241 164 150 122 117 

Q 984 562 267 237 178 151 125 141 

P 711 379 217 184 161 138 114 123 

Q,T 600 324 218 159 140 132 119 120 

Q,P 329 298 166 160 148 129 121 130 

E 251 208 149 150 146 134 106 111 

Q,E 267 187 138 145 122 117 104 108 

 

ANOVA is unable to differentiate between similar-valued cells in the 

strategy matrix because the cells vary not only in mean value, but also in variability 

among the 100 individual values that the mean cell values represent. Figure 1 

displays a scatter plot of the synthetic data set constructed from the data 



specifications in the Davey et al. paper. The figure shows both the variation in mean 

values for different protocols (combinations of interventions) and substantial 

difference in the reproducibility of the model runs. 

Figure 1: Scatter plot of data shown in Table 1. Vertical axis is number of infected individuals 

per run. Horizontal axis shows different intervention combinations. Red dots represent results 

from individual model runs 

Model results can be better understood by considering both values and 

variability simultaneously. Figure 2 shows how the data represented in Figure 1 maps 

to such a display. Figure 3 shows how a simple scatter plot of variability as a function 

of mean infected count can yield a categorization of interventions into efficacy and 

reproducibility. Mean infected person count and standard deviation values from 

Figure 2 are plotted in the left pane of Figure 3. Note that model results define a 

broad arc of values in the Low Infectivity/Low Variability category through the Low 

Infectivity/High Variability category to the High Infectivity/High Variability 

category. Those options falling in the lower left region are those which would be 

most attractive to policy makers. They combine good outcomes and show little 

sensitivity to variability between model runs. 

Consideration of the run results from the perspective of a public policy 

decision maker suggests that economic and reliability considerations might also come 

into play. Policy makers would probably prefer solutions which required fewer 

separate interventions to achieve a desirable outcome compared to those requiring 

many layered interventions. Solutions based on fewer interventions would be 

expected to cost less and be easier to coordinate and deploy in the field. Figure 4 

illustrates that both average infected values and variability show strong correlation 

with number of interventions included in the strategy. Model runs with a larger 

number of layered interventions performed much better generating fewer infected 

individuals and less variation. These data suggest that selection of an effective and 



robust policy involves tradeoffs among conflicting characteristics of cost/complexity, 

effectiveness, and reliability. 

 

Figure 2: Mapping of model results to scatter plot 

Figure 2: Conceptual categorization of scatter plots. Model results falling in lower left 

quadrant represent effective, robust choices. 

  



 

Figure 4. Strategy effectiveness and variability as a function of number of interventions 

An alternate view of the relationships diagrammed in Figure 4 can be seen in the 

scatterplot in Figure 5. This plot demonstrates that best performing low variability 

intervention strategies found in the lower left region of the graph are characterized by 

larger numbers of layered interventions. Options which would be simpler to field and 

presumably cost less are arrayed in the upper right portion of the graph, indicating 

that these options allow more infections and more potentially risky variability.  

Figure 5: Dependence of intervention effectiveness on number of layered interventions 



One approach to resolving the conflicting aims of public policy decision 

makers in evaluating intervention effectiveness and efficiency is to look for the best 

performing mix of interventions for each cost category. Figure 5 shows that within 

each category of intervention counts, intervention combinations possess differing 

effectiveness and robustness to variation. These plots show that little improvement 

occurs in opting for policies relying on four interventions relative to those requiring 

only three. Similarly, the best performing intervention strategy for the two 

intervention case is about as effective as the best performing four intervention 

strategy. This figure suggests that a ranking of effectiveness by intervention count 

class may be useful to allow decision makers to effectively gauge “bang for the buck” 

of different intervention approaches (Table 4). 

Figure 6: Performance of interventions classified by number of layered interventions 

Table 4 reveals some not only the best performing suites of interventions for 

influenza mitigation, but also which specific interventions are most effective. All of 

the listed best-performing composite intervention strategies contain the school 

closure option (S). Child and teen social distancing (C) is the next most common 

component of the best-performing mitigation strategies. Of the case-based 

interventions, quarantine (Q) and antiviral treatment (T) appear to be effective in 

strategies reliant on few interventions, whereas prophylactic interventions (P and E) 

appear to work well only when applied in conjunction with many other interventions. 



Table 4: Intervention Policy Rankings 

Number of 
Interventions 

Rank of 
Effectiveness 

Intervention 
Mean 

Infected 
Standard 
Deviation 

1 1 ______S 220.5273 133.8141 

 
2 ___Q___ 984.4853 595.5609 

 
3 _____C_ 1111.12 586.9511 

     
2 1 _____CS 124.1364 13.89174 

 
2 T_____S 163.9688 65.28918 

 
3 ___Q__S 178.0909 62.91812 

     
3 1 ____ACS 118.6429 14.75235 

 
2 ___Q_CS 125.1429 24.43471 

 
3 T____CS 121.875 30.07342 

     
4 1 TP___CS 114 13.6504 

 
2 T___ACS 116.75 15.32272 

 
3 T__Q_CS 118.5714 22.619 

     
5 1 TP__ACS 123 1.414214 

 
2 TPE__CS 106 3 

 
3 T__QACS 119.6667 4.163332 

     
6 1 TPEQ_CS 103.6 2.50998 

 
2 TPE_ACS 110.75 5.188127 

 
3 TPEQA_S 116.5 14.47165 

     
7 1 TPEQACS 108.3333 1.527525 

 

  



4 Conclusions 

This report presents the initial findings of an extended effort to apply more 

sophisticated data analyses methods to complex adaptive systems. These advanced 

methods and techniques exploit measurements of uncertainty to extract more 

information from suites of model runs than simple summary statistics can provide. 

This initial phase applied standard statistical approaches to published data 

from a peer-reviewed influenza propagation model. The exercise demonstrated that 

mean values from multiple model runs often do not consistently differentiate among 

input values representing the question under investigation. Simple Analysis of 

Variance tests showed that subtle differences between mean values for different 

modeled intervention configurations although evident in tabulated data are not 

statistically significant.  

 Incorporation of an additional factor into the analysis enabled a more 

detailed analysis. The number of interventions which must be applied to achieve a 

desired level of response is a factor which is likely to be of interest to public policy 

decision makers, since it directly relates to implementation cost and complexity. 

Separating the 64 modeled policy combinations into groups based on intervention 

count provided a simple ranking of policy options showing the most effective and 

low-risk policy options for different cost and complexity categories. 

 Phase 2 work underway now addresses the integration of rigorous 

uncertainty quantification to complex adaptive system models to enable robust 

decision making for public health policy questions. 
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