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Public policy seeks to influence complex natural, social, and engineered systems to achieve
desired outcomes. Effective public policies are those which combine good outcomes with high
reliability such that their choice is robust to a wide range of possible uncertainties. Modeling
these complex systems and their potential response to proposed policies can provide decision-
makers with an objective basis for policy design. Critical to this design process is the
development of rigorous methods to evaluate and rank modeled policy effectiveness in context
of model uncertainty.

A peer-reviewed complex system model of pandemic influenza propagation is used
in a test case to illustrate the power of uncertainty-based public policy ranking. The networked-
agent model calculates the effects of both social network-based community mitigation
practices such as school closure and social distancing, and individually-based treatment options
such as antiviral treatment and vaccination. A proposed uncertainty-based methodology is
described. The roles of experimental design, input factor representation, and sensitivity
analysis methodology illustrate a succinct methodology to rank pandemic disease control
options. A combination of space-filling experimental designs, modeling policy options as
continuous rather than categorical variables, and treed Gaussian process and polynomial chaos
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expansion-based sensitivity analysis are projected to yield a straightforward ranking of policy
options that is robust to the identified aleatory and epistemic model uncertainties. These
methods should have the additional advantage of requiring relatively few model runs to
achieve a consistent and defensible ranking. Phase | of the experimental work to demonstrate
the proposed uncertainty-based methodology is outlined. This early work indicates that
analysis of published modeling results can generate a robust composite ranking of public
policy options for mitigation of pandemic influenza.

1 Introduction

Many domains of public policy are well represented as Complex Adaptive Systems
of Systems (CAS0S), including social organizations, economies, and governmental
bodies. Modeling of public policy options and tradeoffs as Complex Adaptive
Systems (CASs) has shown promise recently in understanding the structure and
dynamics of these systems with the goal of improving the quality and reliability of
public policy decisions. Often modeling of CASs results in some increased
understanding of the problem space, but little in the way of objective guidance for
decision makers on how best to formulate policies and regulations to guide the
systems in socially beneficial directions.

Computational models of CASoS permit exploration of a wide range of
possible policy options. High Performance Computing (HPC) enables models to be
run many thousands of times with different input values. Analysis of the model
outputs generated from these suites of runs can provide guidance on how systems
behave under different policy regimes. Vast amounts of data generated by these
supercomputer deployments can be challenging to interpret. However, automated
data reduction eventually provides estimates of possible system responses to policy
changes.

Simple evaluation of CASoS models across a range of inputs provides much
needed information to decision makers, but ignores one of their major concerns.
Policy decisions not only consider the projected end point of the policy
implementation, but also must consider risk. Few policy makers would choose a
prospective policy which promises very good quantitative outcomes, but is likely, if it
should fail, to fail with catastrophic consequences. CASoS-based social, technical,
and governmental systems and models used for their analysis are fraught with
massive uncertainties. An ideal policy choice is one which performs well under a
wide range of uncertainties. Such a policy would be expected to have positive
outcomes, but perhaps more importantly, to also have a low risk of catastrophic
failure.

Methods from the field of uncertainty quantification can provide the
information needed to classify potential public policy options based on both their
outcomes and their risk of failure. These powerful techniques enable researchers to
identify, categorize and manage model and system uncertainty from many sources.
Such uncertainty estimates permit ranking of policies not only by objective
quantitative performance metrics, but also by their robustness to unforeseen events.
While these methods do not yield verifiable predictions of policy outcomes, the



combination of modeling-derived metrics, and uncertainty-derived reliability
estimates permits methodical ranking of policy options.

2 Overview of Uncertainty Analysis

Uncertainty analysis of model results provides quantitative estimates of the quality of
computed model outputs. Sensitivity analysis identifies which model outputs are most
responsive to uncertain inputs. Factor sensitivities combine with knowledge of model
structure and dynamics to generate realistic estimates of total uncertainty in model
outputs.

2.1 Uncertainty

Uncertainty is simply a lack of certainty about a process, a quantity, or the state of a
system. Uncertainty can apply to past and present events, but is most often ascribed
to unknowable future events. While uncertainty is often interpreted as an undesirable
property about a system, uncertainty also admits possibilities for advantageous events
and innovations. Risk is a term that is often applied to uncertain situations or
conditions; here we consider risk to represent undesirable states of uncertainty with
implicit or explicit potential for significant loss.

Computer models exhibit a range of uncertainty types [Helton et al. 2007].
Lack of knowledge about true values for input parameters used for modeling runs is
termed parametric uncertainty. Since research or expert opinion can often narrow
down the certainty with which input parameters are known, parametric uncertainty is
often termed reducible uncertainty. Stochastic uncertainty results from an inability to
forecast future events, such as wind direction next Tuesday, which may be implicit
within a computer model. Structural uncertainty is a measure of how close a model
captures the system of interest. Models constructed with incorrect mathematical
formulations or insufficient detail may be poor analogs of real systems and thus have
high structural uncertainty. An alternative categorization for uncertainty terms both
structural uncertainty and parametric uncertainty as epistemic uncertainty, since they
both arise from a lack of knowledge about values and processes. Stochastic
uncertainty, on the other hand, captures fundamental inability to specify future events
and is often termed aleatory uncertainty.

2.2 Design of Experiments

Using models to evaluate public policy options requires that they be run in a
methodical manner that is focused on the issues at hand. Design of Experiments
(DOE) entails planning model runs and parameter variations to answer a question
adequately and efficiently [Santner et al. 2010]. DOE has long been a staple of bench
research; a wide variety of methods and techniques have been developed to address
cumulative measurement errors and other complications affecting hands-on
experimentation. Computer experiments differ from bench experiments in that
models can be configured to run deterministically and produce the exact same output
for a given input without the variability seen in traditional experiments. Thus, many



of the experimental designs developed for bench experiments are not appropriate for
computer models. Rather than exposing measurement variation within experiments,
designs for computational experiments focus on efficiently covering the
multidimensional space of parameters adequately. Space filling designs ensure that
parameter space is adequately sampled, and is the design of choice for uncertainty
analysis using computer models.

2.3 Sensitivity Analysis

Sensitivity Analysis (SA) apportions variability in the output of a computer model to
uncertainties in the constituent model inputs [Saltelli et al 2008]. As such, SA is a
foundational method for understanding and measuring parametric uncertainty.
Sensitivity analysis generates metrics termed Sensitivity Indices for each parametric
input for a model which represents the impact that that parameter has on the value of
the model output. These sensitivity indices are valuable for determining how best to
decrease uncertainty in a model. Parameters with small sensitivity indices have very
small effect on the output values; thus, effort to reduce uncertainty associated with
those parameters may not translate to substantially decreased output uncertainty.
Efforts to measure or generate more certain parameter estimates would be better
spent on inputs having large sensitivity indices. Refining these parameter values
would be expected to greatly improve overall model uncertainty.

Sensitivity Analyses fall into two broad categories, univariate and
multivariate. Univariate methods are more intuitive to execute and interpret, whereas
multivariate methods provide more information.

Univariate SA methods involve running the computer model many times
with all inputs but one staying fixed. The effect of the single varying input parameter
on the final output value is then plotted in a simple scatterplot. This method provides
a wealth of information on general trends within models due to individual inputs.
However, non-additive effects from combinations of inputs cannot be resolved with
these simple tools.

Multivariate SA techniques methodically vary all inputs for each computer
runs and rely upon sophisticated mathematical procedures to compute sensitivity
indices. Techniques such as the Sobol method can generate accurate estimates the
relative contributions of each input, but can require enormous numbers of model runs
to generate the needed information. In contrast meta-models or surrogate models use
fewer runs to generate a representative response surface for the model. The response
surface is in turn used for detailed sensitivity analysis calculations [Storlie et al.
2009].

2.4 Uncertainty Quantification

Determining the sources of uncertainty and tracing effects of uncertainty throughout a
model is termed uncertainty quantification (UQ) [Helton et al. 2007]. Each uncertain
parameter is investigated to determine which distribution most accurately captures
the possible values for the input. Similarly, each source of stochastic uncertainty is
rigorously identified and its effects determined. The combined effects of these



carefully estimated uncertainties are traced through to determine their possible effects
on output uncertainty. Combined nested loop Monte Carlo model execution protocols
permit concerted calculation of combined effects of epistemic and aleatory
uncertainties. Results of these analyses are traditionally presented in horse-tail plots
wherein individual time histories of many runs are plotted on a common set of axes.

2.4 Decision Analysis

Once the potential effects of uncertainty are measured and apportioned by various SA
and UQ methods, policy options represented as parameter settings are analyzed to
find the most advantageous combinations. Often simple visual inspection of model
performance verses variability allows the most robust and effective policy to be
immediately determined. For more involved models, optimization and search
methods can be used o find the options which best combine objective performance
and low susceptibility to unforeseen circumstances.

3 Applying the Methods

We re-examine the published findings of a peer-reviewed complex system model to
demonstrate the potential applicability of uncertainty analysis on public policy
decision making. Davey et al. [Davey 2008] used an agent based model of disease
propagation through a stylized community to evaluate prevention and mitigation of
pandemic influenza. This investigation investigated the effects of a range mitigation
strategies or policies on the severity and duration of epidemic outbreaks. Many
different parametric combinations were fed into the disease propagation model to
determine the interventions which were most likely to reduce illness, death and
economic cost.

This study will examine the data which was generated by the Davey
investigation to determine whether additional uncertainty-based methods and
analyses could refine the published findings. The present study is organized into four
distinct sequential phases:

1. Applying additional analyses to the data generated by Davey et al.

2. Running the Davey model using different experimental designs

3. Modifying the Davey model to make it more amenable to advanced analyses

4. Applying quantitative decision analytical methods to model data to
rigorously rank policy options.

This paper presents some initial results from Phase 1 of the extended project.

3.1 Model Description

Loki-Infect is a networked agent-based computational model developed by the
National Infrastructure Simulation and Analysis Center (NISAC) at Sandia National
Laboratories. In this model, agents represent individuals of various age classes who
are linked to each other within and among social groups (such as households,



neighborhoods, school classes, clubs, businesses, etc.) to form an explicit contact
network reflective of a multiply-overlapping, structured community. Behavioral rules
for individuals, their interactions, and the performance of network links are specified
to model the spread of influenza. Community mitigation strategies are implemented
through modifications of these behavioral rules when a given strategy is imposed
during a simulation. Intervention strategies are listed in Table 1

Table 1: Intervention Strategies

Category Symbol Intervention
Network-Based S Schools closed.

Network-Based C Social distancing of children and teenagers.
Network-Based A Social distancing of adults and seniors.
Case-Based Q Household gquarantine.

Case-Based T Antiviral treatment.

Case-Based P Household member antiviral prophylaxis.
Case-Based E Extended contact prophylaxis

Davey et al. ran the model for a wide range of compliance values, disease infectivity
values, mitigation initiation and cessation times for combinations of intervention
strategies. The model was run 100 times for each set of distinct input parameters to
explore effectiveness of disease containment across different randomly generated
community social networks. The model was run over 2,000,000 times to fully cover
the parameter space.

Model results were presented in a series of crosstab tables which showed the
mean number of infected people for each combination of intervention strategies. A
small portion of a crosstab from the original study is reproduced as Table 2.

Table 2: Example model run results. Cell values represent mean number of infected
people from 100 runs. Infectivity=0.75, Compliance=90%

None | 2780 | 1872 | 1111 | 624 221 207 124 119

T 1560 | 765 373 241 164 150 122 117
Q 984 562 267 237 178 151 125 141
P 711 379 217 184 161 138 114 123
QT 600 324 218 159 140 132 119 120
QP 329 298 166 160 148 129 121 130
E 251 208 149 150 146 134 106 111
Q,E 267 187 138 145 122 117 104 108




2.2 Data Analysis

Standard statistical techniques can extract useful information from the data set shown
in Table 1. Davey et al. looked at a range of variables affecting intervention
implementation that are not represented in the simplified data subset shown in Table
2. However, this subset serves well to illustrate potentially useful methods.

Mean counts of infected people shown in the cells of Table 2 clearly are
greatest in the upper-left corner and decrease regularly to a minimum in the lower left
corner. This corresponds to large numbers of infected individuals in cells
representing few or no interventions grading to fewer infected persons in cells
representing layered strategies of many interventions applied in concert. However, it
is not clear from Table 2 exactly which interventions are demonstrably superior to
others. Recall that the cell values in Table 2 are mean values from 100 individual
model runs.

Analysis of Variance (ANOVA) of data matching corresponding to the
values shown in Table 2 indicates which interventions can be clearly differentiated
from others based on their mean efficacy at preventing influenza infection. Table 3
summarizes ANOVA results from a synthetic data set matching the mean values
shown in Table 2 and corresponding standard deviation values quoted in the by
Davey et al. Table 3 shows that the data represent six groups of significantly different
mean values. Five distinct groups exist in the upper left of the table indicating
treatments which result in mean infected counts of greater than 500, while all
interventions resulting in less than 500 mean infected represent a single group which
cannon be resolved into smaller sub-groups at 95% confidence. These findings may
be overly optimistic; ANOVA only strictly applies when the distributions of the
individual means is approximately Gaussian, which is unlikely in this case.

Table 3: ANOVA Results. Cell colors indicates clusters of mean values which are
significantly different from others at 95% confidence

None | 2780 | 1872 | 1111 | 624 221 207 124 119

T 1560 | 765 373 241 164 150 122 117
Q 984 562 267 237 178 151 125 141
P 711 379 217 184 161 138 114 123
QT 600 324 218 159 140 132 119 120
QP 329 298 166 160 148 129 121 130
E 251 208 149 150 146 134 106 111
Q,E 267 187 138 145 122 117 104 108

ANOVA is unable to differentiate between similar-valued cells in the
strategy matrix because the cells vary not only in mean value, but also in variability
among the 100 individual values that the mean cell values represent. Figure 1
displays a scatter plot of the synthetic data set constructed from the data



specifications in the Davey et al. paper. The figure shows both the variation in mean
values for different protocols (combinations of interventions) and substantial
difference in the reproducibility of the model runs.

D

3000

8
8
0004 8
1000 ?
1=}

Value

D OO0 ST S T OO
o
OO D OONEENIND O DECONEDOD 0o O

Protocol

Figure 1: Scatter plot of data shown in Table 1. Vertical axis is number of infected individuals
per run. Horizontal axis shows different intervention combinations. Red dots represent results
from individual model runs

Model results can be better understood by considering both values and
variability simultaneously. Figure 2 shows how the data represented in Figure 1 maps
to such a display. Figure 3 shows how a simple scatter plot of variability as a function
of mean infected count can yield a categorization of interventions into efficacy and
reproducibility. Mean infected person count and standard deviation values from
Figure 2 are plotted in the left pane of Figure 3. Note that model results define a
broad arc of values in the Low Infectivity/Low Variability category through the Low
Infectivity/High Variability category to the High Infectivity/High Variability
category. Those options falling in the lower left region are those which would be
most attractive to policy makers. They combine good outcomes and show little
sensitivity to variability between model runs.

Consideration of the run results from the perspective of a public policy
decision maker suggests that economic and reliability considerations might also come
into play. Policy makers would probably prefer solutions which required fewer
separate interventions to achieve a desirable outcome compared to those requiring
many layered interventions. Solutions based on fewer interventions would be
expected to cost less and be easier to coordinate and deploy in the field. Figure 4
illustrates that both average infected values and variability show strong correlation
with number of interventions included in the strategy. Model runs with a larger
number of layered interventions performed much better generating fewer infected
individuals and less variation. These data suggest that selection of an effective and



robust policy involves tradeoffs among conflicting characteristics of cost/complexity,
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Figure 2: Mapping of model results to scatter plot
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Figure 2: Conceptual categorization of scatter plots. Model results falling in lower left
quadrant represent effective, robust choices.
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Figure 4. Strategy effectiveness and variability as a function of number of interventions

An alternate view of the relationships diagrammed in Figure 4 can be seen in the
scatterplot in Figure 5. This plot demonstrates that best performing low variability
intervention strategies found in the lower left region of the graph are characterized by
larger numbers of layered interventions. Options which would be simpler to field and
presumably cost less are arrayed in the upper right portion of the graph, indicating
that these options allow more infections and more potentially risky variability.
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One approach to resolving the conflicting aims of public policy decision
makers in evaluating intervention effectiveness and efficiency is to look for the best
performing mix of interventions for each cost category. Figure 5 shows that within
each category of intervention counts, intervention combinations possess differing
effectiveness and robustness to variation. These plots show that little improvement
occurs in opting for policies relying on four interventions relative to those requiring
only three. Similarly, the best performing intervention strategy for the two
intervention case is about as effective as the best performing four intervention
strategy. This figure suggests that a ranking of effectiveness by intervention count
class may be useful to allow decision makers to effectively gauge “bang for the buck”
of different intervention approaches (Table 4).
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Figure 6: Performance of interventions classified by number of layered interventions

Table 4 reveals some not only the best performing suites of interventions for
influenza mitigation, but also which specific interventions are most effective. All of
the listed best-performing composite intervention strategies contain the school
closure option (S). Child and teen social distancing (C) is the next most common
component of the best-performing mitigation strategies. Of the case-based
interventions, quarantine (Q) and antiviral treatment (T) appear to be effective in
strategies reliant on few interventions, whereas prophylactic interventions (P and E)
appear to work well only when applied in conjunction with many other interventions.



Table 4: Intervention Policy Rankings

Number of Rank of . Mean Standard
. . Intervention -

Interventions Effectiveness Infected Deviation

1 1 S 220.5273 133.8141

2 _Q 984.4853 595.5609

3 C_ 1111.12 586.9511

2 1 CS 124.1364 13.89174

2 T 163.9688 65.28918

_Q_s 178.0909 62.91812

3 1 ACS 118.6429 14.75235

2 Q¢S 125.1429 24.43471

3 T CS 121.875 30.07342

4 1 TP___CS 114 13.6504

2 T ACS 116.75 15.32272

T _QCS 118.5714 22.619

5 1 TP__ACS 123 1.414214
2 TPE__CS 106 3

3 T__QACS 119.6667 4.163332

6 1 TPEQ_CS 103.6 2.50998

2 TPE_ACS 110.75 5.188127

TPEQA_S 116.5 14.47165

7 1 TPEQACS 108.3333 1.527525




4 Conclusions

This report presents the initial findings of an extended effort to apply more
sophisticated data analyses methods to complex adaptive systems. These advanced
methods and techniques exploit measurements of uncertainty to extract more
information from suites of model runs than simple summary statistics can provide.

This initial phase applied standard statistical approaches to published data
from a peer-reviewed influenza propagation model. The exercise demonstrated that
mean values from multiple model runs often do not consistently differentiate among
input values representing the question under investigation. Simple Analysis of
Variance tests showed that subtle differences between mean values for different
modeled intervention configurations although evident in tabulated data are not
statistically significant.

Incorporation of an additional factor into the analysis enabled a more
detailed analysis. The number of interventions which must be applied to achieve a
desired level of response is a factor which is likely to be of interest to public policy
decision makers, since it directly relates to implementation cost and complexity.
Separating the 64 modeled policy combinations into groups based on intervention
count provided a simple ranking of policy options showing the most effective and
low-risk policy options for different cost and complexity categories.

Phase 2 work underway now addresses the integration of rigorous
uncertainty quantification to complex adaptive system models to enable robust
decision making for public health policy questions.
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