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UQ components and methods

Spectral Methods

Computer

Input —»
Model

——Output

Employ sampling-based methods:

@ Non-intrusive Spectral Projection (NISP)

@ Bayesian Inference
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Tackle two of the challenges encountered in forward UQ:

© Output observables exhibit
discontinuities for smooth
changes in the input parameters

@ Model predictions exhibit
fat-tailed distributions.
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Polynomial Chaos expansion represents random

variables as a polynomials of standard random
variables

@ Truncated PCE: finite dimension n and order p
P
X(A(m) = ali(n)
k=0

with the number of terms P+ 1 = (”rm)!,

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]
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Polynomial Chaos expansion represents random

variables as a polynomials of standard random
variables

@ Truncated PCE: finite dimension n and order p

Output X —» X(A ch\Ilk <+— Inputn

with the number of terms P+ 1 = (”rm)'.

@ 1= (n1,---,nn) Standard i.i.d. r.v.
¥y standard orthogonal polynomials
Cx spectral modes.

@ Most common standard Polynomial-Variable pairs:
Gauss-Hermite, Legendre-Uniform

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maitre & Knio, 2010]

Najm (SNL) ICIAM 2011 July 18,2011  4/19



UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral
uncertainty quantification methods can be used

@ Need to represent model output in a problem-independent fashion
that takes into account the bifurcations

e Bayesian inference of the location of the discontinuity

@ Need to perform uncertainty quantification with only a limited set
of sample points, due to the computational cost of the forward
model

e Polynomial chaos representation via parameter domain
mapping
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Bayesian Inference of the Location of Discontinuity

@ Parameterize the discontinuity: A ~ pc(\) = ZE:O CkPi(A1)

@ Approximation model:

1+ tanh (a(A2 — pc(A1)))

Mc =091, A2) =m + (Mg — M) >

@ Noise model postulated: o (A1, A2)

@ Likelihood function:

O-I

N
logP(D|Mc) = ZlogP | Mc) = Z(‘ 9) +|og(2m,)>
i=1
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Bayesian Inference of the Location of Discontinuity

@ Parameterize the discontinuity: A2 ~ pc(\) = Sp_o &kPk(A1)

@ Bayes’ formula: P(M|D) = 2RIDPM)

P(D)
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Discontinuity Detection - Highlights

@ Any distribution of input points

2/3t - .
@ Generalizes to multiple dimensions é ” P
: ——
@ Probabilistic representation £
-2/
T3 a6 13 28

Input parameter A,

K \t‘ | ‘m !i}!’".'
& i 3 Uil mm‘;‘}a "

Discontinuity curve samples and their pdf
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Parameter Domain Mapping via Rosenblatt

Transformation

@ Assume linear discontinuity o
@ Use Rosenblatt AT
Transformation (RT) to map 5 ¢
the pair of uncertain S
parameters (A1,\2) to i.i.d. N
uniform random variables 7, '
and np: .
A= Fil(m), sos
-1 o ° ol by
)\2 = F)\Z‘)\l(’f]2|’f]1) 0 1]1115 1 0 ?115 1

ROSENBLATT TRANSFORMATION: (A1, A2) — (11, 12)

@ Apply the RT mapping to both
sides of the discontinuity
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Compute the Polynomial Chaos Expansions

@ PC expansion for the output observable Z = f()\)

K
Z~> aWi(¢)
k=0

with
(W (€)(€)) = / ()5 (€)pe ()€ = b (T4 (£)?)

@ Spectral Projection

@ Bayesian Inference:
Pcklf (X)) = P(f(Ai)]ck) P(z)
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PC Expansion, Averaged Over Discontinuity Curves

@ PC expansion for each discontinuity curve sample:

ze®x Z U@ (77

@ Model expansion depends on the parameter location:

@ Average over all PC expansions via RT:

/ p(c)Zc(X)dec = / Zg-1() (N)0i
[01}K+1
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Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference PCE Coefficients via Hybrid Approach

pai(hy) ——

pdf(h) —— 1 1
1 08
4 0.6 é’v
g
4 04
4 0.2
0
6
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Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference PCE Coefficients via Hybrid Approach

Forward Mode| ==

25 Orthogonal Projection =

Bayesian Inference ———

Hybrid Approach

pdf(z)
=
&
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Output Z
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Tackle two of the challenges encountered in forward UQ:

@ Model predictions exhibit
fat-tailed distributions.
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Precipitation Data from Climate Simulations

Africa - South Asia - West
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@ Precipitation rate scaled between the minimum and maximum
encountered in the simulation

@ Input parameter 7 - consumption rate of CAPE (convective
available potential energy)

4
[h]

Black lines - 2 year averages; Red lines - 10 year averages; Green lines -
3"-order PC expansions.
(data courtesy of Mike Levy & Mark Taylor, Sandia National Labs)
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Forward UQ: Input Parameter PDF — Output

Observable PDF
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@ Compute the probability that average precipitation exceeds a
certain amount:

P(precip > py) = / pdf (7)dr
7f(7)>pr
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Polynomial Chaos Expansions and Galerkin Projection

@ PC expansion for the output observable Z = f()\)

K
7z~ Z Ck\I/k(f)
k=0
with
(W (€)(€)) = / W) 5 (€)pe (£)dE = 6 (T4 (£)?)

@ Galerkin (orthogonal) projection

() W(©)
()

is weighted-L, optimal, i.e. it minimizes

/
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Conventional Basis Functions

A Gauss-Hermite

Unif-Legendre

Pointwise error

Beta-Jacobi

2 VI

=
o
&

L (I) -
3

@ Legendre basis : error is 'independent’ of position

@ Hermite basis : error is worse in “tails”, away from the origin

@ Jacobi basis: error is small in desired region, i.e. it is controllable!
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Custom Basis Functions

@ Design custom polynomials that are orthogonal with respect to fat tailed
distributions to get a better accuracy in the tail region.

e Use Stieltjes or Chebyshev’s algorithms. Algorithms are
ill-conditioned — use arbitrary precision arithmetic software.

pdf(f)

L
0 5 10 15 20

(Quadrature points’ distribution for polynomials orthogonal
w.r.t. truncated log-normal pdf.)
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“Tail” Probabilities Based on PC Basis Surrogates

Africa—South Asia-West

P(precipitation > pr)
P(precipitation > pr)

10t

.
o|

70 75 80 85 90 95 70 75 80 85 90
P, [%] (precipitation range) p, [%] (precipitation range)

@ Black lines - “Exact” values; Red lines - Hermite PC basis (9"
order); Green lines - Custom PC basis (9" order).

@ The set of quadrature points corresponding to the custom PDF
have a better coverage of the distribution’s tail compared to the set
corresponding to a Gaussian PDF.
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Summary and Future Work

@ Nonlinearities, Bifurcations, Bimodalities
e Probabilistic detection of discontinuities followed by domain
mapping and polynomial chaos expansions to construct
model “surrogates”
e Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information
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@ Nonlinearities, Bifurcations, Bimodalities
e Probabilistic detection of discontinuities followed by domain
mapping and polynomial chaos expansions to construct
model “surrogates”
e Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information

@ Tail regions

e Construct custom spectral basis based on “expected” shape
of the computer model output to improve convergence of the
spectral expansion.

e Extend this methodology to multi-dimensional parameter
dependencies.

e Develop surrogate models as mixed PC expansions:
accurate both near the mean as well as in the tail regions.
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