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UQ components and methods

Input Computer
Model

Output

Spectral Methods

Employ sampling-based methods:

Non-intrusive Spectral Projection (NISP)

Bayesian Inference
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Objective

Tackle two of the challenges encountered in forward UQ:

1 Output observables exhibit
discontinuities for smooth
changes in the input parameters

2 Model predictions exhibit
fat-tailed distributions.
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Polynomial Chaos expansion represents random
variables as a polynomials of standard random
variables

Truncated PCE: finite dimension n and order p

X(λ(η)) ≃

P
∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!
n!p! .

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]
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η = (η1, · · · , ηn) standard i.i.d. r.v.
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variables as a polynomials of standard random
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Truncated PCE: finite dimension n and order p

X(λ(η)) ≃
P
∑

k=0

ckΨk(η)

with the number of terms P + 1 = (n+p)!
n!p! .

η = (η1, · · · , ηn) standard i.i.d. r.v.
Ψk standard orthogonal polynomials
ck spectral modes.

Most common standard Polynomial-Variable pairs:
Gauss-Hermite, Legendre-Uniform

[Wiener, 1938; Ghanem & Spanos, 1991; Xiu & Karniadakis, 2002; Le Maı̂tre & Knio, 2010]

Output X Input η
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UQ & Discontinuities - Proposed Methodology

Our approach locates the discontinuity first so the domain can be
subdivided into regions with smooth model response where spectral

uncertainty quantification methods can be used

Need to represent model output in a problem-independent fashion
that takes into account the bifurcations

• Bayesian inference of the location of the discontinuity

Need to perform uncertainty quantification with only a limited set
of sample points, due to the computational cost of the forward
model

• Polynomial chaos representation via parameter domain
mapping
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Bayesian Inference of the Location of Discontinuity

Parameterize the discontinuity: λ2 ≈ pc(λ) =
∑K

k=0 ckPk(λ1)

Approximation model:

Mc ≡ g(λ1, λ2) = mL + (mR − mL)
1 + tanh (α(λ2 − pc(λ1)))

2

Noise model postulated: σ(λ1, λ2)

Likelihood function:

log P(D|Mc) =

N
∑

i=1

log P(zi |Mc) = −
1
2

N
∑

i=1

(

(zi − gi)
2

σ2
i

+ log
(

2πσ2
i

)

)
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Bayesian Inference of the Location of Discontinuity

Parameterize the discontinuity: λ2 ≈ pc(λ) =
∑K

k=0 ckPk(λ1)

Bayes’ formula: P(M|D) = P(D|M)P(M)
P(D)
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Discontinuity Detection - Highlights

Any distribution of input points

Generalizes to multiple dimensions

Probabilistic representation
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Parameter Domain Mapping via Rosenblatt
Transformation

Assume linear discontinuity

Use Rosenblatt
Transformation (RT) to map
the pair of uncertain
parameters (λ1,λ2) to i.i.d.
uniform random variables η1

and η2:

λ1 = F−1
λ (η1),

λ2 = F−1
λ2|λ1

(η2|η1)

Apply the RT mapping to both
sides of the discontinuity
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Compute the Polynomial Chaos Expansions

PC expansion for the output observable Z = f (λ)

Z ≃

K
∑

k=0

ckΨk(ξ)

with

〈Ψi(ξ)Ψj(ξ)〉 ≡

∫

Ψi(ξ)Ψj(ξ)pξ(ξ)dξ = δij 〈Ψi(ξ)
2〉

Spectral Projection

ck =
〈f (λ(ξ))Ψk(ξ)〉

〈Ψ2
k(ξ)〉

Bayesian Inference:

P(ck|f (λi)) ≈ P(f (λi)|ck)P(zk)
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PC Expansion, Averaged Over Discontinuity Curves

PC expansion for each discontinuity curve sample:

ZL,R
c (~λ) = Z̃c(~η) =

P
∑

p=0

cpΨ
(2)
p (~η)

Model expansion depends on the parameter location:

Zc(~λ) =

{

ZL
c(~λ) if (~λ) ∈ DL

ZR
c(~λ) if (~λ) ∈ DR

.

Average over all PC expansions via RT:

Ẑ(~λ) =

∫

C
p(c)Zc(~λ)dc =

∫

[0,1]K+1
ZR−1(~η)(

~λ)d~η
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Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference
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Discontinuous Data Represented Well with the Averaged PC

PCE Coefficients via Bayesian Inference
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Objective

Tackle two of the challenges encountered in forward UQ:

2 Model predictions exhibit
fat-tailed distributions.
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Precipitation Data from Climate Simulations

Africa - South
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Precipitation rate scaled between the minimum and maximum
encountered in the simulation
Input parameter τ - consumption rate of CAPE (convective
available potential energy)

Black lines - 2 year averages; Red lines - 10 year averages; Green lines -
3rd-order PC expansions.

(data courtesy of Mike Levy & Mark Taylor, Sandia National Labs)
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Forward UQ: Input Parameter PDF → Output
Observable PDF
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Compute the probability that average precipitation exceeds a
certain amount:

P(precip. > pr) =

∫

τ :f (τ)>pr

pdf(τ)dτ
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Polynomial Chaos Expansions and Galerkin Projection

PC expansion for the output observable Z = f (λ)

Z ≃
K
∑

k=0

ckΨk(ξ)

with

〈Ψi(ξ)Ψj(ξ)〉 ≡

∫

Ψi(ξ)Ψj(ξ)pξ(ξ)dξ = δij 〈Ψi(ξ)
2〉

Galerkin (orthogonal) projection

ck =
〈f (λ(ξ))Ψk(ξ)〉

〈Ψ2
k(ξ)〉

is weighted-L2 optimal, i.e. it minimizes

∫

∣

∣

∣

∣

∣

f (λ(ξ)) −

K
∑

k=0

ckΨk(ξ)

∣

∣

∣

∣

∣

2

pξ(ξ)dξ
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Conventional Basis Functions

ξ
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Legendre basis : error is ’independent’ of position

Hermite basis : error is worse in “tails”, away from the origin

Jacobi basis: error is small in desired region, i.e. it is controllable!
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Custom Basis Functions

Design custom polynomials that are orthogonal with respect to fat tailed
distributions to get a better accuracy in the tail region.

• Use Stieltjes or Chebyshev’s algorithms. Algorithms are
ill-conditioned → use arbitrary precision arithmetic software.
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“Tail” Probabilities Based on PC Basis Surrogates
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Black lines - “Exact” values; Red lines - Hermite PC basis (9th

order); Green lines - Custom PC basis (9th order).

The set of quadrature points corresponding to the custom PDF
have a better coverage of the distribution’s tail compared to the set
corresponding to a Gaussian PDF.
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Summary and Future Work

Nonlinearities, Bifurcations, Bimodalities
• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct
model “surrogates”

• Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information
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• Probabilistic detection of discontinuities followed by domain

mapping and polynomial chaos expansions to construct
model “surrogates”

• Extend this approach to incorporate optimal experimental
design, i.e. find parameter values at which the model should
be simulated to give maximum information

Tail regions
• Construct custom spectral basis based on “expected” shape

of the computer model output to improve convergence of the
spectral expansion.

• Extend this methodology to multi-dimensional parameter
dependencies.

• Develop surrogate models as mixed PC expansions:
accurate both near the mean as well as in the tail regions.
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