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The term fractal was coined by Benoit Mandelbrot to
denote an object that is broken or fractured in space or
time.

* Fractals provide appropriate models for many media over
some finite range of length scales with lower and upper
cutoffs.

 Research was performed in condensed matter physics
since the late 1980’s for materials with fractal geometries.

— However, a field theory, an analogue of continuum physics and
mechanics, was sorely lacking.

— Some progress towards a field theory was made by
mathematicians, who began to look at classical problems like
Laplace’s or the heat equation on fractal sets. But, this approach is
very technical from the mathematical analysis standpoint and only
begins to offer an avenue to tackle simple mechanics

3 problems. @

Background

Sandia
National
Laboratories



« A very different step in the direction of a field theory and

problems was taken by Tarasov [1-3].

— He developed continuum-type equations of conservation of mass,
linear and angular momentum, and energy for fractals, and studied
several fluid mechanics and wave problems.

— Tarasov’s approach relies on dimensional regularization of fractal
objects through fractional integrals in Euclidean space, a technique
with its roots in quantum mechanics.

— Another advantage of this approach is that it admits upper and
lower cutoffs of fractal scaling, so that one effectively deals with a
physical pre-fractal rather than a purely mathematical fractal
lacking any cutoffs.

Background
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A 4

hereas the original formulation of Tarasov was based on
the Riesz measure, and thus more suited to isotropic
fractal media, a model that is based on a product measure
was introduced by Li and Ostoja-Starzewski [1,2].

— This measure has different fractal dimensions in different
directions.

— It grasps the anisotropy of fractal geometry better than the original
formulation for a range of length scales between the lower and
upper cutoffs.
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ping Continuum Mechanics for
Fractal Media

e extended continuum thermomechanics to a fractal
medium which is characterized by a mass (or spatial)
fractal dimension, a surface fractal dimension, and a
resolution length scale.

The continuum theory is based on dimensional
regularization, in which global mass, momentum, and
energy laws employ fractional integrals.

The global forms of governing equations are cast in forms
involving conventional (integer-order) integrals, while the

local forms are expressed by partial differential equations
with derivatives of integer order.
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'
Mer Law and Fractional Integrals

« By a fractal medium, we mean a medium with a pre-fractal
geometric structure.

* In order to deal with general anisotropic, fractal media, we
use a more general power law relation with respect to
each coordinate and the mass is specified via a product
measure as

mW) = p(x,%,%)dl, (x)dl,, (x,)dl, (x)

 The length measure in each coordinate is provided using
the transformation coefficients

dl, (x,)= (o, x)dx,, k=1,2,3 (nosum).
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ransformation Coefficients

e adopt the modified Riemann-Liouville fractional integral
of Jumarie [1,2] for the transformation coefficients

oy —1
P =a, (l"_—x") , k=1,2,3, (nosum),

lk 0

where [, is the total length (integral interval) along x, and /,,
Is the characteristic length in the given direction, like the
mean pore size. In the product measure formulation, the
resolution length scale is

R=\L1

1. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (df)a . Appl. Math. Lett.
18, 739-748 (2005) Sandia

8 2. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for National
non-differentiable functions. Appl. Math. Lett. 22(3), 378-385 (2009) Laboratories



dl, = cdx,, dS,=c"dS,, dV, = c,dV, (no sum). f

nization Process for Fractal Media

Map Fractal Space into

Euclidean Space.

Euclidean
Space

oy
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- .
. monal Integral Theorems and

' Fractal Derivatives

« By the conventional Gauss theorem, and noting that c,*
does not depend on the coordinate x,, we obtain

[ s, = [ fnds, = [ L ar, =], Lo,

 Based on this expression, we define the fractal derivative,
v,Das

D 1 0
ko (k)
c,”’ Ox,

\Y% (no sum).

 Based on this definition, Gauss Theorem for Fractal media
becomes

J.ﬁWf.nde :J.vafdeD :J.W(VD 'f)der
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ional Integral Theorems and

? Fractal Derivatives
 "To define the fractal material time derivative, we consider

11

the fractional generalization of Reynolds transport
theorem.

— Consider any quantity, P, accompanied by a moving fractal material
system, W,, with velocity vector field v (= v,).

— Itis straightforward to show that
oP

j PV, = [—+ v, P ,k}dV - [Em“vD(vk )}dVD.

The result given by the first equality is identical to the
conventional representation, hence, the fractal material
time derivative and the conventional material time
derivative are the same

P P dP
(i) P= or +v P, = or +cy VPP = |
dt ot ot dt @ Sande
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um Mechanics for Fractal Media

e specify the relationship between surface force, F° (=
F.°), and the Cauchy stress tensor, ¢,,, using fractional

integrals as S "
by = j Sdsznzde = J. 5O ds,.

« To specify the strain, we observe that

0 _ox 0 _ 1 0 o
ol, ol ox, c“ax, "

k

 Thus, for small deformations, we define the strain, ¢;, in

i
terms of the displacement u, as

1, . 1{ 1 1 }
g, =—\Viu,+Viu |)=—|—u, +——u., | (nosum).
J 2( J J) 9) Cl(]) J Cl() J

« The fractal equations for continuity, momentum, and
energy follow from the balance laws for mass, momentlslard_n,

ndia
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ractal Continuity Equation

« Consider the equation for conservation of mass for W

d
EJ‘WPCZVD = 0.

« Using the fractional Reynolds transport theorem, we obtain

j pdV, —j [—4— (vip) ,k}deo.
« Since W is arbitrary, the fractal continuity equation is

op _dp
—+ —+pv,, =0.
o1 (Vkp) " PV

« Orin terms of the fractal derivative

d ap (k) D
—+ pc,’'V
a PO
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ractal Momentum Equation

 Consider the balance law of linear momentum for W, with
Fg is the body force, and Fg is the surface force,

d B, S
—thpvdVD—F + F5,

« Using Reynold’s transport and Gauss theorems and the
continuity equation, we obtain

[ p=t v L, = | bav,+[ o,mdS,=[ bav,+[ vic,av,

« Since W is arbitrary, the fractal linear momentum equation

IS
dvk
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o Fractal Energy Equation

he most general form of balance (conservation) of energy
must be used to obtain the fractal energy equation is

— The time rate of change of the kinetic energy plus the internal
energy of a region, W, in a continuum equals the sum of the rate of
work performed on W by external agencies plus the flux of all other
energies supplied to or removed from W by external agencies
across the boundary of W.

* In terms of the kinetic energy K, internal energy K, and heat
flux, 1
K =§ijvividVD, EszpedVD, and —Ianinide,

and using the fractal momentum equation, we obtain

| p%dVD = [ ow(VIvi)av,—[ Viqav,.

« Since W is arbitrary, the fractal energy equation is

15 P % ~On (vak ) - V?qi. @ Noftond
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| Angular Momentum Equation

he conservation of angular momentum in a fractal
medium is stated as

d
EI pe;,xv.dv, j e xbdV, +j €, X 0, ndS,,

* Using the fractal momentum equation and Gauss Theorem,
we obtain the fractal angular momentum equation,

= 0.

e ij
- :
y CI(J)

« Since c,” = c,M, j = k, in general, the Cauchy stress is
generally asymmetric in fractal media.
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lastic Solid Under Finite Strains

e obtain the equations of motion using Hamilton's
Principle for the Lagrangian L = K - E of a fractal solid W
isolated from external interactions

51 = 5jf[l< _Eldt=0,

 The deformation gradient in fractal space is
1

F, :ﬁxk”:fok.
¢
« Assuming the specific internal energy e is a function of the
deformation gradient only and after lots of math, we obtain

the governing equation

V?{p ae}—pﬁﬂ) or — 9 {p ae}pﬁﬂ,

OF,, dt ¢ oX,|" OF, dt
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ar Waves in a Fractal Elastic Solid

« "According to our prescription, the deformation gradient in
one dimension is

g Lox(X,n)
¢ 0X
- Differentiating with respect to time, we obtain the equation
OF 1% 0 whichimplies 22— _o,
ot ¢ X or ol
« Assuming the stress S is a function only of F, we obtain
V_EOF_ whichimplies Z-E£% _o  L_85(F)

ot pc, 0X o pol, oOF
 These equations can be solved by the method of
characteristics in fractal spacetime using characteristics

dl
“=4C  with propagation speed C = E Sandia
18 dt P @ ehoraores




V
., %k Front in a Fractal Linear
Viscoelastic Solid
« Consider shock fronts in viscoelastic fractal solids. In one
dimension, the motion in a fractal rod Wis
(l/cl)gbc: pu’tt

« The dynamics compatibility condition implies the
discontinuity in stress is

[[o]]=-pCllu, ]] mn (,.7)- plane,
 The linear viscoelastic stress-strain relation for a process
that started at time t={," is
o (f) = E(0)e () + j E,, (t—s)e(s)ds = E(O)—u,x () + j E, (t- S)—u (5)ds,

* It can be shown that the dlscontlnmty in stress and 'the
propagation speed are given by

_ lE,t(O) C = @
[[6]]—60@413{2 £(0) t} and e o
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P ummary and Conclusions

e We extended continuum thermomechanics to fractal
media.

 The continuum theory is based on dimensional
regularization, in which we employ fractional integrals to
state global balance laws.

 We derived fractal continuity, linear momentum, and
energy equations, which through dimensional
regularization can be cast into equations in E°.

« We showed that the Cauchy stress tensor is, in general,
not symmetric in fractal media.
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';,« i
P ummary and Conclusions

Using Hamilton’s principle, we obtained the equations of
motion of a fractal elastic solid undergoing finite strains.

We obtained equations governing the nonlinear waves in
such a solid and showed that the equations can be solved
by the method of characteristics in fractal space-time.

We studied shock fronts in linear viscoelastic solids under
small strains and showed that the discontinuity in stress
across a shock front in a fractal medium is identical to the
classical result.
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'
. ' Future Directions

e plan to extend these ideas to develop a peridynamic
theory for fractal media.
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