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BackgroundBackground

• The term fractal was coined by Benoît Mandelbrot to 
denote an object that is broken or fractured in space or 
time.  

• Fractals provide appropriate models for many media over 
some finite range of length scales with lower and upper 
cutoffs.

• Research was performed in condensed matter physics 
since the late 1980’s for materials with fractal geometries.
– However, a field theory, an analogue of continuum physics and 

mechanics, was sorely lacking. 

– Some progress towards a field theory was made by 
mathematicians, who began to look at classical problems like 
Laplace’s or the heat equation on fractal sets.  But, this approach is 
very technical from the mathematical analysis standpoint and only 
begins to offer an avenue to tackle simple mechanics          
problems.3



BackgroundBackground

• A very different step in the direction of a field theory and 
problems was taken by Tarasov [1-3].
– He developed continuum-type equations of conservation of mass, 

linear and angular momentum, and energy for fractals, and studied 
several fluid mechanics and wave problems. 

– Tarasov’s approach relies on dimensional regularization of fractal 
objects through fractional integrals in Euclidean space, a technique 
with its roots in quantum mechanics.

– Another advantage of this approach is that it admits upper and 
lower cutoffs of fractal scaling, so that one effectively deals with a 
physical pre-fractal rather than a purely mathematical fractal 
lacking any cutoffs.

1. Tarasov, V.E.: Continuous medium model for fractal media. Phys. Lett. A 336, 167–174 (2005)
2. Tarasov, V.E.: Fractional hydrodynamic equations for fractal media. Ann. Phys. 318(2), 286–307 (2005)
3. Tarasov, V.E.: Wave equation for fractal solid string. Mod. Phys. Lett. B 19(15), 721–728 (2005)
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BackgroundBackground

• Whereas the original formulation of Tarasov was based on 
the Riesz measure, and thus more suited to isotropic 
fractal media, a model that is based on a product measure 
was introduced by Li and Ostoja-Starzewski [1,2]. 
– This measure has different fractal dimensions in different 

directions.

– It grasps the anisotropy of fractal geometry better than the original 
formulation for a range of length scales between the lower and 
upper cutoffs.

1. Li, J., Ostoja-Starzewski, M.: Fractal materials, beams and fracture mechanics. Z. Angew. Math. Phys. 60, 1–12 (2009)
2. Li, J., Ostoja-Starzewski, M.: Fractal solids, product measures and fractional wave equations. Proc. R. Soc. A 465, 
2521–2536 (2009). doi:10.1098/rspa.2009.0101. Errata (2010) doi:10.1098/rspa.2010.0491
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Developing Continuum Mechanics for Developing Continuum Mechanics for 
Fractal MediaFractal Media

• We extended continuum thermomechanics to a fractal 
medium which is characterized by a mass (or spatial) 
fractal dimension, a surface fractal dimension, and a 
resolution length scale.  

• The continuum theory is based on dimensional 
regularization, in which global mass, momentum, and 
energy laws employ fractional integrals.  

• The global forms of governing equations are cast in forms 
involving conventional (integer-order) integrals, while the 
local forms are expressed by partial differential equations 
with derivatives of integer order.
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Mass Power Law and Fractional IntegralsMass Power Law and Fractional Integrals

• By a fractal medium, we mean a medium with a pre-fractal 
geometric structure.

• In order to deal with general anisotropic, fractal media, we 
use a more general  power law relation with respect to 
each coordinate and the mass is specified via a product 
measure as

1 2 31 2 3 1 2 3( ) ( , , ) ( ) ( ) ( ).
W

m W x x x dl x dl x dl x   

• The length measure in each coordinate is provided using 
the transformation coefficients

( )
1( ) ( , ) ,    1,2,3    (no sum).

k

k
k k k kdl x c x dx k  
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Transformation CoefficientsTransformation Coefficients

• We adopt the modified Riemann-Liouville fractional integral 
of Jumarie [1,2] for the transformation coefficients

1. Jumarie, G.: On the representation of fractional Brownian motion as an integral with respect to (dt)a . Appl. Math. Lett. 
18, 739–748 (2005)
2. Jumarie, G.: Table of some basic fractional calculus formulae derived from a modified Riemann-Liouville derivative for 
non-differentiable functions. Appl. Math. Lett. 22(3), 378–385 (2009)

1

( )
1

0

,    1,2,3,     (no sum),
k

k k k
k

k

l x
c k

l






 

  
 

where lk is the total length (integral interval) along xk and lk0

is the characteristic length in the given direction, like the 
mean pore size. In the product measure formulation, the 
resolution length scale is

k kR l l
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Homogenization Process for Fractal MediaHomogenization Process for Fractal Media

Fractal Space

Euclidean
Space

Map Fractal Space into
Euclidean Space.
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Fractional Integral Theorems andFractional Integral Theorems and
Fractal DerivativesFractal Derivatives

• By the conventional Gauss theorem, and noting that c2
(k)

does not depend on the coordinate xk, we obtain

( )
2 3 ( )

1

,
[ ], .k k k

d k k d k k DkW W W W

f
dS f n dS f c dV dV

c 
     f n

• Based on this expression, we define the fractal derivative, 
k

D as

( )
1

1
  (no sum).D

k k
kc x


 



• Based on this definition, Gauss Theorem for Fractal media
becomes

  .D D
d k k D D

W W W
dS f dV dV


     f n f 
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Fractional Integral Theorems andFractional Integral Theorems and
Fractal DerivativesFractal Derivatives

• To define the fractal material time derivative, we consider 
the fractional generalization of Reynolds transport 
theorem. 
– Consider any quantity, P, accompanied by a moving fractal material 

system, Wt, with velocity vector field v (= vk). 

– It is straightforward to show that
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   ( )
1, .

t t t

k D
D k k D k k D

W W W

d P P
PdV v P dV c v P dV

dt t t

    
           

  

• The result given by the first equality is identical to the 
conventional representation, hence, the fractal material 
time derivative and the conventional material time 
derivative are the same

( )
1, .k D

k k k k

D

d P P dP
P v P c v P

dt t t dt

  
      

  



Continuum Mechanics for Fractal Media Continuum Mechanics for Fractal Media 

• We specify the relationship between surface force, FS (= 
Fk

S), and the Cauchy stress tensor, kl, using fractional 
integrals as
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2

( )
2 2.

d

S l
k lk l d lk lS S

F n dS n c dS   
• To specify the strain, we observe that 

( )
1

1
.

k k

Dk
kk

k k

x

l l x c x 

   
   

   

• Thus, for small deformations, we define the strain, ij, in 
terms of the displacement uk as 

  ( ) ( )
1 1

1 1 1 1
, ,   (no sum).

2 2
D D

ij j i i j i j j ij i
u u u u

c c


 
     

 

• The fractal equations for continuity, momentum, and 
energy follow from the balance laws for mass, momentum, 
and energy.



Fractal Continuity EquationFractal Continuity Equation

• Consider the equation for conservation of mass for W
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0.DW

d
dV

dt
 

• Using the fractional Reynolds transport theorem, we obtain

  , 0.D k k DW W

d
dV v dV

dt t


 

 
    

 

  , , 0.k k k k

d
v v

t dt

 
 


   



• Since W is arbitrary, the fractal continuity equation is

• Or in terms of the fractal derivative

( )
1 0.k D

k k

d
c v

dt


  



Fractal Momentum EquationFractal Momentum Equation

• Consider the balance law of linear momentum for W, with 
FB is the body force, and FS is the surface force, 
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,B S
DW

d
dV

dt
   v F F

• Using Reynold’s transport and Gauss theorems and the 
continuity equation, we obtain

.Dk
D k D lk l d k D l lk D

W W W W W

dv
dV b dV n dS b dV dV

dt
  


        

• Since W is arbitrary, the fractal linear momentum equation 
is

.Dk
k l lk

dv
b

dt
  



Fractal Energy EquationFractal Energy Equation

• The most general form of balance (conservation) of energy 
must be used to obtain the fractal energy equation is
– The time rate of change of the kinetic energy plus the internal 

energy of a region, W, in a continuum equals the sum of the rate of 
work performed on W by external agencies plus the flux of all other 
energies supplied to or removed from W by external agencies 
across the boundary of W.
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, , and ,
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i i D D i i dW W W

K v v dV E edV q n dS 

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• In terms of the kinetic energy K, internal energy K, and heat 
flux, 

and using the fractal momentum equation, we obtain  

  .D D
D lk l k D i i D

W W W

de
dV v dV q dV

dt
      

• Since W is arbitrary, the fractal energy equation is

  .D D
lk l k i i

de
v q

dt
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Fractal Angular Momentum EquationFractal Angular Momentum Equation

• The conservation of angular momentum in a fractal 
medium is stated as
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,ijk j k D ijk j k D ijk j lk l d
W W W

d
e x v dV e x b dV e x n dS

dt
 


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• Using the fractal momentum equation and Gauss Theorem, 
we obtain the fractal angular momentum equation,

( )
1

0.jk

ijk j
e

c




• Since c1
(j)  c1

(k), j  k, in general, the Cauchy stress is 
generally asymmetric in fractal media.



Fractal Elastic Solid Under Finite StrainsFractal Elastic Solid Under Finite Strains

• We obtain the equations of motion using Hamilton's 
Principle for the Lagrangian L = K - E of a fractal solid W
isolated from external interactions
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2

1

[ ] 0,
t

t
I K E dt   

• The deformation gradient in fractal space is

( )
1

1
, .D

kI k I I kI
F x x

c
 

• Assuming the specific internal energy e is a function of the 
deformation gradient only and after lots of math, we obtain 
the governing equation

( )
1

1
0    or    0,D k k

I I
kI I kI

e dv e dv

F dt c X F dt
   
     

       
     



Nonlinear Waves in a Fractal Elastic SolidNonlinear Waves in a Fractal Elastic Solid

• According to our prescription, the deformation gradient in 
one dimension is
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1

1 ( , )
.

x X t
F

c X






• Differentiating with respect to time, we obtain the equation

1

1
0 which implies    0,

F v F v

t c X t l

   
   

   

• Assuming the stress S is a function only of F, we obtain

1

0 which implies    0.
v E F v E F

t c X t l 

   
   

   
( )

.
S F

E
F






• These equations can be solved by the method of 
characteristics in fractal spacetime using characteristics 

dl
C

dt
   .

E
C


with propagation speed



Shock Front in a Fractal LinearShock Front in a Fractal Linear
Viscoelastic SolidViscoelastic Solid

• Consider shock fronts in viscoelastic fractal solids.  In one 
dimension, the motion in a fractal rod W is
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1(1/ ) , ,x ttc u 

• The dynamics compatibility condition implies the 
discontinuity in stress is

[[ ]] [[ , ]]   in  ( , ) ,tC u l t plane   

• The linear viscoelastic stress-strain relation for a process 
that started at time t = t0

+ is

0 0
1 1

1 1
( ) (0) ( ) , ( ) ( ) (0) , ( ) , ( ) , ( ) ,

t t

t x t xt t
t E t E t s s ds E u t E t s u s ds

c c
  

 
      

• It can be shown that the discontinuity in stress and the 
propagation speed are given by

0

1 , (0)
[[ ]] exp

2 (0)
tE

t
E

 
 

  
 

and
(0)

.
E

C






Summary and ConclusionsSummary and Conclusions

• We extended continuum thermomechanics to fractal 
media. 

• The continuum theory is based on dimensional 
regularization, in which we employ fractional integrals to 
state global balance laws. 

• We derived fractal continuity, linear momentum, and 
energy equations, which through dimensional 
regularization can be cast into equations in E3. 

• We showed that the Cauchy stress tensor is, in general, 
not symmetric in fractal media. 
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Summary and ConclusionsSummary and Conclusions

• Using Hamilton’s principle, we obtained the equations of 
motion of a fractal elastic solid undergoing finite strains. 

• We obtained equations governing the nonlinear waves in 
such a solid and showed that the equations can be solved 
by the method of characteristics in fractal space-time. 

• We studied shock fronts in linear viscoelastic solids under 
small strains and showed that the discontinuity in stress 
across a shock front in a fractal medium is identical to the 
classical result. 
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Future DirectionsFuture Directions

• We plan to extend these ideas to develop a peridynamic 
theory for fractal media.
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