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ABSTRACT
One of the most pressing issues with petascale analysis is the
transport of simulation results data to a meaningful analy-
sis. Traditional workflow prescribes storing the simulation
results to disk and later retrieving them for analysis and
visualization. However, at petascale this storage of the full
results is prohibitive. A solution to this problem is to run the
analysis and visualization concurrently with the simulation
and bypass the storage of the full results. One mechanism
for doing so is in transit visualization in which analysis and
visualization is run on I/O nodes that receive the full simu-
lation results but write information from analysis or provide
run-time visualization. This paper describes the work in
progress for three in transit visualization solutions, each us-
ing a different transport mechanism and providing different
examples of use.

Categories and Subject Descriptors
I.6.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Output Analysis
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1. INTRODUCTION
In situ visualization refers to running a simulation con-

currently with the visualization of its results. The concept
of running a visualization while the simulation is running
is not new. It is mentioned in the 1987 National Science
Foundation Visualization in Scientific Computing workshop
report [18], which is often attributed to launching the field
of scientific visualization. However, the interest in in situ
visualization has grown significantly in recent years.

Recent studies show that the cost of dedicated interac-
tive visualization computers for petascale is prohibitive [5]
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and that the time spent in writing data to and reading data
from disk storage is beginning to dominate the time spent in
both the simulation and the visualization [26, 27, 30]. Con-
sequently, in situ visualization is one of the most important
research topics in large scale visualization today [2,13].

In transit visualization (also known as staged visualiza-
tion) is a particularly elegant form of in situ visualization
that exploits an I/O transport infrastructure. A modern
supercomputer’s compute rate far exceeds its disk transfer
rate. Recent studies show that the latency of the disk stor-
age can be hidden by having a “staging” job running sepa-
rately but concurrently with the main computation job that
is able to buffer data and write it to disk while the main
job continues to compute [1, 20, 21, 29]. Rather than dump
the results straight to disk, it is feasible to instead (or in
addition) perform “in transit” analysis and visualization on
these staging nodes as demonstrated in Figure 1.
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Figure 1: In transit visualization leverages an I/O
transport layer to intercept data and perform anal-
ysis.

In transit visualization requires the ability to transfer data
from the scientific code to the “staging” area for analysis. In
techniques such as I/O Delegation [20] the applications uses
MPI to communicate this data. For I/O Delegation, the
user allocates an additional set of staging processors when
it launches the application. A separate MPI communica-
tor allows the staging processors to perform analysis with-
out interfering with the primary application. This approach
was first demonstrated for high-performance computing in a
seismic imaging application called Salvo [25]. In Salvo, the
user allocated an “I/O Partition” for staging outgoing data
and also performing proprocessing (i.e., FFTs) on incoming
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data. I/O delegation is perhaps the most portable approach
for in transit computation, but it requires a tight coupling
of analysis with application and it is impossible to share the
service with multiple applications.

A second approach for in transit visualization is to create
the staging area as a separate application (or service) that
communicates with the client application through a low-level
network transport. This approach is extremely flexible be-
cause it allows for the potential “chaining” of application
services, coupling of applications, and application sharing.
The three projects described in this paper use this approach.

This paper presents the work in progress for three projects
performing in transit visualization. Each project uses a
different I/O transport mechanism: the Network Scalable
Service Interface (Nessie) [23], the GLEAN framework [35],
and the Adaptable IO System (ADIOS) [16]. Each project
demonstrates the integration of visualization with a differ-
ent type of simulation. All three projects make use of the
ParaView parallel visualization services [32].

2. RELATED WORK
There exist several systems designed to directly integrate

simulation with visualization such as SCIRun [12], pV3 [11],
and RVSLIB [8]. Other work focuses on integrating simu-
lation codes with end user visualization tools such as Par-
aView [10] and VisIt [37].

These solutions require programmers to directly integrate
the simulation with a visualization solution. One of the goals
of in transit visualization is to more loosely couple these two
units. Tools such as ESPN [9] and ITAPS [4] attempt to
provide more general interfaces between data producers and
consumers.

In addition to those discussed here, other projects are also
considering in transit visualization. For example, another
approach leverages the XDMF/HDF5 layer as a transport
mechanism for visualization [3].

3. NESSIE
The NEtwork Scalable Service Interface (Nessie) is a

framework for developing in transit analysis capabilities [23].
It provides a remote-procedure call (RPC) abstraction that
allows the application-developer to create custom data ser-
vices to match the specific needs of the application.

Like Sun RPC [19], Nessie relies on client and server stub
functions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format. This
approach is portable because it allows access to services on
heterogeneous systems, but it is not efficient for I/O requests
that contain raw buffers that do not need encoding. To ad-
dress this issue, Nessie uses separate communication chan-
nels for control and data messages. In this model, a control
message is typically small. It identifies the operation to
perform, where to get arguments, the structure of the argu-
ments, and so forth. In contrast, a data message is typically
large and consists of “raw” bytes that, in most cases, do
not need to be encoded/decoded by the server. The Nessie
client uses the RPC-like interface to push control messages
to the servers, but the server uses a different, one-sided API
to push or pull data to/from the client using the systems
native remote direct-memory addressing (RDMA) capabil-
ities. This protocol allows interactions with heterogeneous
servers, but also benefits from allowing the server to con-

trol the transport of bulk data [15,31]. The server can thus
manage large volumes of requests with minimal resource re-
quirements. Furthermore, since servers are expected to be a
critical bottleneck in the system, a server-directed approach
allows the server to optimize the processing of requests for
efficient use of underlying network and storage devices —
for example, re-ordering requests to a storage device [15].

Nessie is designed specifically for HPC systems that sup-
port RDMA and has ports for Portals, InfiniBand, Gemini,
and LUC. Nessie has been used to implement services for
file systems [22], HPC proxies for database access [24], and
data staging for PnetCDF [29]. In this paper, we describe
ongoing work using Nessie for in transit analysis of the CTH
shock physics code [14].

Rather than require applications to modify code to sup-
port Nessie, a typical service developer uses the RPC frame-
work to develop link-time replacements for libraries already
in use by the application. This is the approach taken for
the PnetCDF staging service, the SQL proxy, and the CTH
fragment-detection service. In the case of CTH, we imple-
mented client and server stubs for the PVSPY library — an
API for performing in-situ analysis using ParaView. Instead
of performing the analysis on the CTH compute nodes, our
PVSPY client marshals requests, sends data to the stag-
ing nodes, and performs the analysis on the staging nodes.
Figure 2 illustrates this process. This approach allows frag-
ment detection to execute in parallel with CTH, unlike the
in-situ approach that requires CTH to wait for the analysis
to complete. This approach requires no code changes on the
part of the CTH developer and it allows trivial performance
analysis comparing in-situ verses in transit approaches. This
performance study is ongoing and will be reported in future
work.
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Figure 2: In transit fragment detection for the CTH
shock physics code.

4. GLEAN
GLEAN is a flexible and extensible framework that takes

application, analysis and system characteristics into account
to facilitate simulation-time data analysis and I/O accelera-
tion [35]. It is developed by the Mathematics and Computer
Science Division (MCS) and Argonne Leadership Comput-
ing Facility (ALCF) at Argonne National Laboratory. To fa-
cilitate in transit visualization, GLEAN uses a client/server
architecture to move data out of the simulation application
(client) to dedicated staging nodes (server). The GLEAN
client runs on compute nodes or on dedicated I/O nodes.
It takes data I/O streams from a running solver and for-
wards the data to a GLEAN server. The GLEAN server
runs on staging or visualization nodes that are connected to



the supercomputer via a local network.
GLEAN is used as the data transport method in covis and

in-situ experiments using the PHASTA flow solver and Par-
aView coprocessor on an IBM BlueGene/P supercomputer.
PHASTA is a parallel, hierarchic (2nd-5th order accurate),
adaptive, stabilized (finite element) transient, incompress-
ible and compressible flow solver [36]. The ParaView copro-
cessor is a library that provides ParaView’s parallel services
to a solver by linking directly with the solver binary targeted
to run on compute nodes [10]. At the end of a timestep or
iteration, the solver makes a function call to pass the current
solution state to the coprocessor. The coprocessor reads in-
structions from a python script to build a filter pipeline for
in-situ analysis of the solution data. The filter pipeline ex-
tracts meaningful information from the input data and saves
the results using I/O. In this experiment, GLEAN was used
as the I/O framework instead, removing the need to write
to the hard disk.

The GLEAN integration with the ParaView coprocessor
was implemented with a pair of Visualization Toolkit (VTK)
reader and writers. VTK is the visualization library on
which ParaView is built. To perform standard disk I/O,
the user would connect a geometry writer to the end of the
coprocessor filter pipeline. In this experiment we replace a
standard VTK writer with the GLEAN writer. The GLEAN
writer acts as a GLEAN client to re-route data to a listening
GLEAN server on staging nodes. On the staging nodes, a
GLEAN server combined with a standard ParaView server
receives the data. The VTK GLEAN reader on the Par-
aView server takes the data from the GLEAN server and
makes it available to the user interacting with the ParaView
server.

Conversion of VTK data objects produced by the copro-
cessor to GLEAN transit buffers requires zero copying of
memory. Once the data has been moved to the staging
nodes, a GLEAN filter re-indexes the element arrays to ac-
count for the aggregation of the data from a large num-
ber of compute nodes to a smaller number of stage nodes.
The GLEAN reader requests arrays from the GLEAN server
and re-packs them into VTK data objects, without copying
the data, to serve to the consuming filters of the ParaView
server.

We conducted in transit visualization experiments on In-
trepid, an IBM BlueGene/P at ALCF with 160,000 cores,
and the Eureka visualization cluster with 400 cores and 200
GPUs. A ParaView server with coupled GLEAN server
ran on Eureka, and the PHASTA solver coupled with the
ParaView coprocessor ran on Intrepid. The demonstration
problem simulated flow control over a full 3D swept wing
as shown in Figure 3. Synthetic jets on the wing pulsed
at 1750Hz, producing unsteady cross flow that increase or
decrease the lift, or even reattach a separated flow.

Runs used meshes of size 22M, 416M, and 3.3B elements.
At full scale, the experiment used the total amount of avail-
able cores on both systems, while a ParaView GUI connected
to the ParaView server on Eureka interacted with the solver
data offloaded using GLEAN transport from Intrepid and
staged on Eureka.

5. ADIOS
The Adaptable I/O System framework (ADIOS) [16] is a

next-generation I/O framework, which provides innovative
solutions to a variety of I/O challenges facing large-scale

Figure 3: Cut plane through the synthetic jet simu-
lated with PHASTA on Intrepid and visualized con-
currently on Eureka.

scientific applications. ADIOS has been designed to sepa-
rate the I/O API from the actual implementation of the I/O
methods. This design specification enables the users to eas-
ily, and without any application source code modifications,
select I/O methods that are performance and functionality
optimized for the target platform. ADIOS also includes a
new self-describing file-format, which has shown scalability
at leadership scale (> 100K cores) [17] and high consistent
throughput for both writing and reading [28, 34]. Due to
the componentized architecture many institutions have con-
tributed to the development of ADIOS methods and appli-
cations utilizing ADIOS have received over 24% of the allo-
cated time at Oak Ridge Leadership Computing Facility.

By decoupling the APIs from the implementation, ADIOS
also enables output in a variety for formats ranging from
ASCII to parallel HDF5, and also allow the usage of new
data staging techniques [6, 34] which can bypass the stor-
age system altogether. The user is provided the flexibility
of selecting the I/O technique through a single change in
an application specific XML file allowing an easy transition
from file-based coupling to in-memory coupling [6, 38].

This external XML file is also used to describe the data
and can additionally be used to add annotations which can
aid data processing downstream from the application, espe-
cially for in transit visualization. For example, users can add
extra information to describe the schema for visualization.

The DataSpaces method in ADIOS [6], provides the ab-
straction of a virtual semantically specialized shared space
that can be associatively and asynchronously accessed us-
ing simple, yet powerful and flexible, operators (e.g., put()
and get()) with appropriate data selectors. These operators
are location and distribution agnostic allowing the in tran-
sit visualization to reference data without explicitly dealing
with discovery and transfer. Additionally, the DataSpaces
staging area exists as a separate application (see Figure 1),
providing fault isolation for the application. Thus, failures
in the coupled codes do not have to propagate to the ap-
plication. The DataSpace can also hold multiple versions of
a named dataset, for example, multiple timesteps from an
application. DataSpace also manages the available buffer-
ing in the staging area autonomously by evicting the oldest
versions. This eviction policy is particularly apt for typi-



cal visualization scenarios where the data generation rate
from the application needs to be decoupled from the data
consumption rate of visualization.

Applications already utilizing the ADIOS API can im-
mediately use the DataSpaces method for in transit visual-
ization. DataSpaces and ADIOS allow reader applications
(e.g. ParaView server or a coupled application [7]) to re-
trieve an arbitrary portion of a dataset, however, in order
to address the unavailability of some timesteps we had to
modify the read semantics for the reading application. Data
sets are referenced by a timestep and only a single timestep
can be retrieved at a time. Additionally, new error codes
of the file-open operation indicate if the requested timestep
is not available any more (but newer steps are available) or
if the data producer has terminated and thus the requested
timestep will never be available.

Figure 4: Using ADIOS/DataSpaces for in transit
analysis and visualization

Our in transit visualization application (see Figure 4) in-
volves five separate applications.

Pixie3D is an MHD code for plasma fusion simulation.
Pixplot is a parallel analysis code for Pixie3D output that

creates a larger dataset, which is then studied by the
user via visualization.

Pixmon creates 2D slices of the 3D output of Pixie3D and
to presents them through ESiMon [33] to monitor the
run.

ParaView server with an ADIOS reader plugin can read
either from a file or from a staging area.

DataSpaces serves these four applications.

The visualization server is controlled by a ParaView client;
therefore, the retrieval rate of individual timesteps is vary-
ing. In our actual simulation run, Pixie3D generated about
100MB of data every second while Pixplot processed every
30th step and wrote about 500MB every 30 seconds. One
compute node for staging was enough to hold 20 timesteps at
once and thus 10 minutes of Pixplot run to comfortably an-
alyze the run with ParaView. Since DataSpaces can scale to
hundreds of nodes and provides low latency and high band-

width for data exchange it can store all timesteps of a run
of this nature if needed.

6. CONCLUSION
An in situ visualization system requires flexibility if it is to

be applied to multiple problem domains, and the in transit
approach provides a convenient mechanism to loosely couple
simulation and visualization components. As noted in this
paper, we are pursuing the use of the parallel ParaView
server with several different I/O transport mechanisms and
simulations. This work will simplify the creation if in situ
services in simulation runs.
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