
Examples of In Transit Visualization

Kenneth Moreland,‡ Ron Oldfield,‡ Pat Marion,∗ Sebastien Jourdain,∗
Norbert Podhorszki,† Venkatram Vishwanath,¶ Nathan Fabian,‡ Ciprian Docan,§

Manish Parashar,§ Mark Hereld,¶ Michael E. Papka,¶ and Scott Klasky†
‡Sandia National Laboratories

∗Kitware, Inc.
†Oak Ridge National Laboratory
¶Argonne National Laboratory

§Rutgers University

ABSTRACT
One of the most pressing issues with petascale analysis is the
transport of simulation results data to a meaningful analy-
sis. Traditional workflow prescribes storing the simulation
results to disk and later retrieving them for analysis and
visualization. However, at petascale this storage of the full
results is prohibitive. A solution to this problem is to run the
analysis and visualization concurrently with the simulation
and bypass the storage of the full results. One mechanism
for doing so is in transit visualization in which analysis and
visualization is run on I/O nodes that receive the full simu-
lation results but write information from analysis or provide
run-time visualization. This paper describes the work in
progress for three in transit visualization solutions, each us-
ing a different transport mechanism and providing different
examples of use.

Categories and Subject Descriptors
I.6.6 [Computing Methodologies]: Simulation and Mod-
eling—Simulation Output Analysis

Keywords
in situ, in transit, staging, parallel scientific visualization

1. INTRODUCTION
In situ visualization refers to running a simulation con-

currently with the visualization of its results. The concept
of running a visualization while the simulation is running
is not new. It is mentioned in the 1987 National Science
Foundation Visualization in Scientific Computing workshop
report [18], which is often attributed to launching the field
of scientific visualization. However, the interest in in situ
visualization has grown significantly in recent years.

Recent studies show that the cost of dedicated interac-
tive visualization computers for petascale is prohibitive [5]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

and that the time spent in writing data to and reading data
from disk storage is beginning to dominate the time spent in
both the simulation and the visualization [26, 27, 30]. Con-
sequently, in situ visualization is one of the most important
research topics in large scale visualization today [2,13].

In transit visualization (also known as staged visualiza-
tion) is a particularly elegant form of in situ visualization
that exploits an I/O transport infrastructure. A modern
supercomputer’s compute rate far exceeds its disk transfer
rate. Recent studies show that the latency of the disk stor-
age can be hidden by having a “staging” job running sepa-
rately but concurrently with the main computation job that
is able to buffer data and write it to disk while the main
job continues to compute [1, 20, 21, 29]. Rather than dump
the results straight to disk, it is feasible to instead (or in
addition) perform “in transit” analysis and visualization on
these staging nodes as demonstrated in Figure 1.

Vis

Simulation

Computational Nodes

Staging
Nodes

Simulation Results

Visualization Results

Vis ClientInteractive Vis Control

Figure 1: In transit visualization leverages an I/O
transport layer to intercept data and perform anal-
ysis.

In transit visualization requires the ability to transfer data
from the scientific code to the “staging” area for analysis. In
techniques such as I/O Delegation [20] the applications uses
MPI to communicate this data. For I/O Delegation, the
user allocates an additional set of staging processors when
it launches the application. A separate MPI communica-
tor allows the staging processors to perform analysis with-
out interfering with the primary application. This approach
was first demonstrated for high-performance computing in a
seismic imaging application called Salvo [25]. In Salvo, the
user allocated an “I/O Partition” for staging outgoing data
and also performing proprocessing (i.e., FFTs) on incoming

SAND2011-6534C

data. I/O delegation is perhaps the most portable approach
for in transit computation, but it requires a tight coupling
of analysis with application and it is impossible to share the
service with multiple applications.

A second approach for in transit visualization is to create
the staging area as a separate application (or service) that
communicates with the client application through a low-level
network transport. This approach is extremely flexible be-
cause it allows for the potential “chaining” of application
services, coupling of applications, and application sharing.
The three projects described in this paper use this approach.

This paper presents the work in progress for three projects
performing in transit visualization. Each project uses a
different I/O transport mechanism: the Network Scalable
Service Interface (Nessie) [23], the GLEAN framework [35],
and the Adaptable IO System (ADIOS) [16]. Each project
demonstrates the integration of visualization with a differ-
ent type of simulation. All three projects make use of the
ParaView parallel visualization services [32].

2. RELATED WORK
There exist several systems designed to directly integrate

simulation with visualization such as SCIRun [12], pV3 [11],
and RVSLIB [8]. Other work focuses on integrating simu-
lation codes with end user visualization tools such as Par-
aView [10] and VisIt [37].

These solutions require programmers to directly integrate
the simulation with a visualization solution. One of the goals
of in transit visualization is to more loosely couple these two
units. Tools such as ESPN [9] and ITAPS [4] attempt to
provide more general interfaces between data producers and
consumers.

In addition to those discussed here, other projects are also
considering in transit visualization. For example, another
approach leverages the XDMF/HDF5 layer as a transport
mechanism for visualization [3].

3. NESSIE
The NEtwork Scalable Service Interface (Nessie) is a

framework for developing in transit analysis capabilities [23].
It provides a remote-procedure call (RPC) abstraction that
allows the application-developer to create custom data ser-
vices to match the specific needs of the application.

Like Sun RPC [19], Nessie relies on client and server stub
functions to encode/decode (i.e., marshal) procedure call
parameters to/from a machine-independent format. This
approach is portable because it allows access to services on
heterogeneous systems, but it is not efficient for I/O requests
that contain raw buffers that do not need encoding. To ad-
dress this issue, Nessie uses separate communication chan-
nels for control and data messages. In this model, a control
message is typically small. It identifies the operation to
perform, where to get arguments, the structure of the argu-
ments, and so forth. In contrast, a data message is typically
large and consists of “raw” bytes that, in most cases, do
not need to be encoded/decoded by the server. The Nessie
client uses the RPC-like interface to push control messages
to the servers, but the server uses a different, one-sided API
to push or pull data to/from the client using the systems
native remote direct-memory addressing (RDMA) capabil-
ities. This protocol allows interactions with heterogeneous
servers, but also benefits from allowing the server to con-

trol the transport of bulk data [15,31]. The server can thus
manage large volumes of requests with minimal resource re-
quirements. Furthermore, since servers are expected to be a
critical bottleneck in the system, a server-directed approach
allows the server to optimize the processing of requests for
efficient use of underlying network and storage devices —
for example, re-ordering requests to a storage device [15].

Nessie is designed specifically for HPC systems that sup-
port RDMA and has ports for Portals, InfiniBand, Gemini,
and LUC. Nessie has been used to implement services for
file systems [22], HPC proxies for database access [24], and
data staging for PnetCDF [29]. In this paper, we describe
ongoing work using Nessie for in transit analysis of the CTH
shock physics code [14].

Rather than require applications to modify code to sup-
port Nessie, a typical service developer uses the RPC frame-
work to develop link-time replacements for libraries already
in use by the application. This is the approach taken for
the PnetCDF staging service, the SQL proxy, and the CTH
fragment-detection service. In the case of CTH, we imple-
mented client and server stubs for the PVSPY library — an
API for performing in-situ analysis using ParaView. Instead
of performing the analysis on the CTH compute nodes, our
PVSPY client marshals requests, sends data to the stag-
ing nodes, and performs the analysis on the staging nodes.
Figure 2 illustrates this process. This approach allows frag-
ment detection to execute in parallel with CTH, unlike the
in-situ approach that requires CTH to wait for the analysis
to complete. This approach requires no code changes on the
part of the CTH developer and it allows trivial performance
analysis comparing in-situ verses in transit approaches. This
performance study is ongoing and will be reported in future
work.

...

...

Client Application

CTH
PVSPY
Client

Fragment-Detection Service

PVSPY
Server

Raw
Data

Fragment
Data

Figure 2: In transit fragment detection for the CTH
shock physics code.

4. GLEAN
GLEAN is a flexible and extensible framework that takes

application, analysis and system characteristics into account
to facilitate simulation-time data analysis and I/O accelera-
tion [35]. It is developed by the Mathematics and Computer
Science Division (MCS) and Argonne Leadership Comput-
ing Facility (ALCF) at Argonne National Laboratory. To fa-
cilitate in transit visualization, GLEAN uses a client/server
architecture to move data out of the simulation application
(client) to dedicated staging nodes (server). The GLEAN
client runs on compute nodes or on dedicated I/O nodes.
It takes data I/O streams from a running solver and for-
wards the data to a GLEAN server. The GLEAN server
runs on staging or visualization nodes that are connected to

the supercomputer via a local network.
GLEAN is used as the data transport method in covis and

in-situ experiments using the PHASTA flow solver and Par-
aView coprocessor on an IBM BlueGene/P supercomputer.
PHASTA is a parallel, hierarchic (2nd-5th order accurate),
adaptive, stabilized (finite element) transient, incompress-
ible and compressible flow solver [36]. The ParaView copro-
cessor is a library that provides ParaView’s parallel services
to a solver by linking directly with the solver binary targeted
to run on compute nodes [10]. At the end of a timestep or
iteration, the solver makes a function call to pass the current
solution state to the coprocessor. The coprocessor reads in-
structions from a python script to build a filter pipeline for
in-situ analysis of the solution data. The filter pipeline ex-
tracts meaningful information from the input data and saves
the results using I/O. In this experiment, GLEAN was used
as the I/O framework instead, removing the need to write
to the hard disk.

The GLEAN integration with the ParaView coprocessor
was implemented with a pair of Visualization Toolkit (VTK)
reader and writers. VTK is the visualization library on
which ParaView is built. To perform standard disk I/O,
the user would connect a geometry writer to the end of the
coprocessor filter pipeline. In this experiment we replace a
standard VTK writer with the GLEAN writer. The GLEAN
writer acts as a GLEAN client to re-route data to a listening
GLEAN server on staging nodes. On the staging nodes, a
GLEAN server combined with a standard ParaView server
receives the data. The VTK GLEAN reader on the Par-
aView server takes the data from the GLEAN server and
makes it available to the user interacting with the ParaView
server.

Conversion of VTK data objects produced by the copro-
cessor to GLEAN transit buffers requires zero copying of
memory. Once the data has been moved to the staging
nodes, a GLEAN filter re-indexes the element arrays to ac-
count for the aggregation of the data from a large num-
ber of compute nodes to a smaller number of stage nodes.
The GLEAN reader requests arrays from the GLEAN server
and re-packs them into VTK data objects, without copying
the data, to serve to the consuming filters of the ParaView
server.

We conducted in transit visualization experiments on In-
trepid, an IBM BlueGene/P at ALCF with 160,000 cores,
and the Eureka visualization cluster with 400 cores and 200
GPUs. A ParaView server with coupled GLEAN server
ran on Eureka, and the PHASTA solver coupled with the
ParaView coprocessor ran on Intrepid. The demonstration
problem simulated flow control over a full 3D swept wing
as shown in Figure 3. Synthetic jets on the wing pulsed
at 1750Hz, producing unsteady cross flow that increase or
decrease the lift, or even reattach a separated flow.

Runs used meshes of size 22M, 416M, and 3.3B elements.
At full scale, the experiment used the total amount of avail-
able cores on both systems, while a ParaView GUI connected
to the ParaView server on Eureka interacted with the solver
data offloaded using GLEAN transport from Intrepid and
staged on Eureka.

5. ADIOS
The Adaptable I/O System framework (ADIOS) [16] is a

next-generation I/O framework, which provides innovative
solutions to a variety of I/O challenges facing large-scale

Figure 3: Cut plane through the synthetic jet simu-
lated with PHASTA on Intrepid and visualized con-
currently on Eureka.

scientific applications. ADIOS has been designed to sepa-
rate the I/O API from the actual implementation of the I/O
methods. This design specification enables the users to eas-
ily, and without any application source code modifications,
select I/O methods that are performance and functionality
optimized for the target platform. ADIOS also includes a
new self-describing file-format, which has shown scalability
at leadership scale (> 100K cores) [17] and high consistent
throughput for both writing and reading [28, 34]. Due to
the componentized architecture many institutions have con-
tributed to the development of ADIOS methods and appli-
cations utilizing ADIOS have received over 24% of the allo-
cated time at Oak Ridge Leadership Computing Facility.

By decoupling the APIs from the implementation, ADIOS
also enables output in a variety for formats ranging from
ASCII to parallel HDF5, and also allow the usage of new
data staging techniques [6, 34] which can bypass the stor-
age system altogether. The user is provided the flexibility
of selecting the I/O technique through a single change in
an application specific XML file allowing an easy transition
from file-based coupling to in-memory coupling [6, 38].

This external XML file is also used to describe the data
and can additionally be used to add annotations which can
aid data processing downstream from the application, espe-
cially for in transit visualization. For example, users can add
extra information to describe the schema for visualization.

The DataSpaces method in ADIOS [6], provides the ab-
straction of a virtual semantically specialized shared space
that can be associatively and asynchronously accessed us-
ing simple, yet powerful and flexible, operators (e.g., put()
and get()) with appropriate data selectors. These operators
are location and distribution agnostic allowing the in tran-
sit visualization to reference data without explicitly dealing
with discovery and transfer. Additionally, the DataSpaces
staging area exists as a separate application (see Figure 1),
providing fault isolation for the application. Thus, failures
in the coupled codes do not have to propagate to the ap-
plication. The DataSpace can also hold multiple versions of
a named dataset, for example, multiple timesteps from an
application. DataSpace also manages the available buffer-
ing in the staging area autonomously by evicting the oldest
versions. This eviction policy is particularly apt for typi-

cal visualization scenarios where the data generation rate
from the application needs to be decoupled from the data
consumption rate of visualization.

Applications already utilizing the ADIOS API can im-
mediately use the DataSpaces method for in transit visual-
ization. DataSpaces and ADIOS allow reader applications
(e.g. ParaView server or a coupled application [7]) to re-
trieve an arbitrary portion of a dataset, however, in order
to address the unavailability of some timesteps we had to
modify the read semantics for the reading application. Data
sets are referenced by a timestep and only a single timestep
can be retrieved at a time. Additionally, new error codes
of the file-open operation indicate if the requested timestep
is not available any more (but newer steps are available) or
if the data producer has terminated and thus the requested
timestep will never be available.

Figure 4: Using ADIOS/DataSpaces for in transit
analysis and visualization

Our in transit visualization application (see Figure 4) in-
volves five separate applications.

Pixie3D is an MHD code for plasma fusion simulation.
Pixplot is a parallel analysis code for Pixie3D output that

creates a larger dataset, which is then studied by the
user via visualization.

Pixmon creates 2D slices of the 3D output of Pixie3D and
to presents them through ESiMon [33] to monitor the
run.

ParaView server with an ADIOS reader plugin can read
either from a file or from a staging area.

DataSpaces serves these four applications.

The visualization server is controlled by a ParaView client;
therefore, the retrieval rate of individual timesteps is vary-
ing. In our actual simulation run, Pixie3D generated about
100MB of data every second while Pixplot processed every
30th step and wrote about 500MB every 30 seconds. One
compute node for staging was enough to hold 20 timesteps at
once and thus 10 minutes of Pixplot run to comfortably an-
alyze the run with ParaView. Since DataSpaces can scale to
hundreds of nodes and provides low latency and high band-

width for data exchange it can store all timesteps of a run
of this nature if needed.

6. CONCLUSION
An in situ visualization system requires flexibility if it is to

be applied to multiple problem domains, and the in transit
approach provides a convenient mechanism to loosely couple
simulation and visualization components. As noted in this
paper, we are pursuing the use of the parallel ParaView
server with several different I/O transport mechanisms and
simulations. This work will simplify the creation if in situ
services in simulation runs.

7. ACKNOWLEDGMENTS
Funding for this work was provided by the SciDAC Insti-

tute for Ultrascale Visualization and by the Advanced Sim-
ulation and Computing Program of the National Nuclear
Security Administration.

Sandia National Laboratories is a multi-program labora-
tory managed and operated by Sandia Corporation, a wholly
owned subsidiary of Lockheed Martin Corporation, for the
U.S. Department of Energy’s National Nuclear Security Ad-
ministration under contract DE-AC04-94AL85000.

This research used resources of the Argonne Leadership
Computing Facility at Argonne National Laboratory, which
is supported by the Office of Science of the U.S. Department
of Energy under contract DE-AC02-06CH11357.

8. REFERENCES
[1] H. Abbasi, M. Wolf, G. Eisenhauer, S. Klasky,

K. Schwan, and F. Zheng. DataStager: Scalable data
staging services for petascale applications. In
Proceedings of the 18th ACM International Symposium
on High Performance Distributed Computing (HPDC
’09), 2009. DOI=10.1145/1551609.1551618.

[2] S. Ahern, A. Shoshani, K.-L. Ma, et al. Scientific
discovery at the exascale. Report from the DOE
ASCR 2011 Workshop on Exascale Data Management,
Analysis, and Visualization, February 2011.

[3] J. Biddiscombe, J. Soumagne, G. Oger, D. Guibert,
and J.-G. Piccinali. Parallel computational steering
and analysis for hpc applications using a paraview
interface and the hdf5 dsm virtual file driver. In
Eurographics Symposium on Parallel Graphics and
Visualization, pages 91–100, 2011.
DOI=10.2312/EGPGV/EGPGV11/091-100.

[4] K. Chand, B. Fix, T. Dahlgren, L. F. Diachin, X. Li,
C. Ollivier-Gooch, E. S. Seol, M. S. Shephard,
T. Tautges, and H. Trease. The ITAPS iMesh
interface. Technical Report Version 0.7, U. S.
Department of Energy: Science Discovery through
Advanced Computing (SciDAC), 2007.

[5] H. Childs. Architectural challenges and solutions for
petascale postprocessing. Journal of Physics:
Conference Series, 78(012012), 2007.
DOI=10.1088/1742-6596/78/1/012012.

[6] C. Docan, M. Parashar, and S. Klasky. DataSpaces:
An interaction and coordination framework for
coupled simulation workflows. In 19th ACM
International Symposium on High Performance and
Distributed Computing (HPDC’10), Chicago, IL, June
2010.

[7] C. Docan, F. Zhang, M. Parashar, J. Cummings,
N. Podhorszki, and S. Klasky. Experiments with
memory-to-memory coupling for end-to-end fusion
simulation workflows. In 10th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid’10), pages 293–301, Melbourne,
Australia, May 2010.

[8] S. Doi, T. Takei, and H. Matsumoto. Experiences in
large-scale volume data visualization with RVSLIB.
Computer Graphics, 35(2), May 2001.

[9] A. Esnard, N. Richart, and O. Coulaud. A steering
environment for online parallel visualization of legacy
parallel simulations. In Proceedings of the 10th
International Symposium on Distributed Simulation
and Real-Time Applications (DS-RT 2006), pages
7–14, October 2006. DOI=10.1109/DS-RT.2006.7.

[10] N. Fabian, K. Moreland, D. Thompson, A. C. Bauer,
P. Marion, B. Geveci, M. Rasquin, and K. E. Jansen.
The ParaView coprocessing library: A scalable,
general purpose in situ visualization library. In
Proceedings of the IEEE Symposium on Large-Scale
Data Analysis and Visualization, October 2011. (To
appear in.).

[11] R. Haimes and D. E. Edwards. Visualization in a
parallel processing environment. In Proceedings of the
35th AIAA Aerospace Sciences Meeting, number
AIAA Paper 97-0348, January 1997.

[12] C. Johnson, S. G. Parker, C. Hansen, G. L.
Kindlmann, and Y. Livnat. Interactive simulation and
visualization. IEEE Computer, 32(12):59–65,
December 1999. DOI=10.1109/2.809252.

[13] C. Johnson, R. Ross, et al. Visualization and
knowledge discovery. Report from the DOE/ASCR
Workshop on Visual Analysis and Data Exploration at
Extreme Scale, October 2007.

[14] E. S. H. Jr., R. L. Bell, M. G. Elrick, A. V.
Farnsworth, G. I. Kerley, J. M. McGlaun, S. V.
Petney, S. A. Silling, P. A. Taylor, and L. Yarrington.
CTH: A software family for multi-dimensional shock
physics analysis. In R. Brun and L. Dumitrescu,
editors, Proceedings of the 19’th International
Symposium on Shock Physics, volume 1, pages
377–382, Marseille, France, July 1993.

[15] D. Kotz. Disk-directed I/O for MIMD multiprocessors.
In H. Jin, T. Cortes, and R. Buyya, editors, High
Performance Mass Storage and Parallel I/O:
Technologies and Applications, chapter 35, pages
513–535. IEEE Computer Society Press and John
Wiley & Sons, 2001.

[16] J. Lofstead, F. Zheng, S. Klasky, and K. Schwan.
Adaptable, metadata rich IO methods for portable
high performance IO. In IEEE International
Symposium on Parallel & Distributed Processing,
IPDPS’09, May 2009.
DOI=10.1109/IPDPS.2009.5161052.

[17] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield,
T. Kordenbrock, K. Schwan, and M. Wolf. Managing
variability in the IO performance of petascale storage
systems. In Proceedings of the Conference on High
Performance Computing, Networking, Storage and
Analysis, SC’10, New Orleans, LA, November 2010.

[18] B. H. McCormick, T. A. DeFanti, and M. D. Brown,

editors. Visualization in Scientific Computing (special
issue of Computer Graphics), volume 21. ACM, 1987.

[19] S. Microsystems. RPC: remote procedure call protocol
specification, version 2. Technical Report RFC 1057,
Sun Microsystems, Inc., June 1988.

[20] A. Nisar, W. keng Liao, and A. Choudhary. Scaling
parallel I/O performance through I/O delegate and
caching system. In Proceedings of the 2008
ACM/IEEE Conference on Supercomputing,
November 2008.

[21] R. A. Oldfield, S. Arunagiri, P. J. Teller, S. Seelam,
R. Riesen, M. R. Varela, and P. C. Roth. Modeling
the impact of checkpoints on next-generation systems.
In Proceedings of the 24th IEEE Conference on Mass
Storage Systems and Technologies, San Diego, CA,
September 2007.

[22] R. A. Oldfield, A. B. Maccabe, S. Arunagiri,
T. Kordenbrock, R. Riesen, L. Ward, and P. Widener.
Lightweight I/O for scientific applications. In
Proceedings of the IEEE International Conference on
Cluster Computing, Barcelona, Spain, Sept. 2006.

[23] R. A. Oldfield, P. Widener, A. B. Maccabe, L. Ward,
and T. Kordenbrock. Efficient data-movement for
lightweight I/O. In Proceedings of the 2006
International Workshop on High Performance I/O
Techniques and Deployment of Very Large I/O
Systems, Barcelona, Spain, Sept. 2006.

[24] R. A. Oldfield, A. Wilson, G. Davidson, and C. Ulmer.
Access to external resources using service-node
proxies. In Proceedings of the Cray User Group
Meeting, Atlanta, GA, May 2009.

[25] R. A. Oldfield, D. E. Womble, and C. C. Ober.
Efficient parallel I/O in seismic imaging. International
Journal of High Performance Computing Applications,
12(3):333–344, Fall 1998.

[26] T. Peterka, H. Yu, R. Ross, and K.-L. Ma. Parallel
volume rendering on the IBM Blue Gene/P. In
Proceedings of Eurographics Parallel Graphics and
Visualization Symposium 2008, 2008.

[27] T. Peterka, H. Yu, R. Ross, K.-L. Ma, and R. Latham.
End-to-end study of parallel volume rendering on the
ibm blue gene/p. In Proceedings of ICPP ’09, pages
566–573, September 2009.
DOI=10.1109/ICPP.2009.27.

[28] M. Polte, J. Lofstead, J. Bent, G. Gibson, S. Klasky,
Q. Liu, M. Parashar, N. Podhorszki, K. Schwan,
M. Wingate, and M. Wolf. ...and eat it too: High read
performance in write-optimized HPC I/O middleware
file formats. In Proceedings of Petascale Data Storage
Workshop 2009 at Supercomputing 2009, November
2009.

[29] C. Reiss, G. Lofstead, and R. Oldfield.
Implementation and evaluation of a staging proxy for
checkpoint I/O. Technical report, Sandia National
Laboratories, Albuquerque, NM, August 2008.

[30] R. B. Ross, T. Peterka, H.-W. Shen, Y. Hong, K.-L.
Ma, H. Yu, and K. Moreland. Visualization and
parallel I/O at extreme scale. Journal of Physics:
Conference Series, 125(012099), 2008.
DOI=10.1088/1742-6596/125/1/012099.

[31] K. E. Seamons and M. Winslett. Multidimensional
array I/O in Panda 1.0. Journal of Supercomputing,

10(2):191–211, 1996.

[32] A. H. Squillacote. The ParaView Guide: A Parallel
Visualization Application. Kitware Inc., 2007. ISBN
1-930934-21-1.

[33] R. Tchoua, S. Klasky, N. Podhorszki, B. Grimm,
A. Khan, E. Santos, C. Silva, P. Mouallem, and
M. Vouk. Collaborative monitoring and analysis for
simulation scientists. In 2010 International Symposium
on Collaborative Technologies and Systems, (CTS
2010), pages 235–244, Chicago, IL, USA, May 2010.

[34] Y. Tian, S. Klasky, H. Abbasi, J. Lofstead, R. Grout,
N. Podhorszki, Q. Liu, Y. Wang, and W. Yu. Edo:
Improving read performance for scientific applications
through elastic data organization. In IEEE Cluster
2011, Austin, TX, 2011.

[35] V. Vishwanath, M. Hereld, V. Morozov, and M. E.
Papka. Topology-aware data movement and staging
for I/O acceleration on BlueGene/P supercomputing
systems. In IEEE/ACM International Conference for
High Performance Computing, Networking, Storage
and Analysis (SC 2011), November 2011.

[36] C. H. Whiting and K. E. Jansen. A stabilized finite
element method for the incompressible Navier–Stokes
equations using a hierarchical basis. International
Journal for Numerical Methods in Fluids,
35(1):93–116, January 2001.

[37] B. Whitlock. Getting data into VisIt. Technical
Report LLNL-SM-446033, Lawrence Livermore
National Laboratory, July 2010.

[38] F. Zhang, C. Docan, M. Parashar, and S. Klasky.
Enabling multi-physics coupled simulations within the
PGAS programming framework. In IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing (CCGrid), pages 84–93, 2011.

	Introduction
	Related Work
	Nessie
	GLEAN
	ADIOS
	Conclusion
	Acknowledgments
	References

