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48	
  racks	
  	
  
1,024	
  nodes	
  per	
  rack	
  
16	
  cores	
  per	
  node	
  	
  
64	
  threads	
  per	
  node	
  
16GB	
  memory/node	
  
1.6GHz	
  16-­‐way	
  core	
  processor	
  	
  
240	
  GB/s,	
  35	
  PB	
  storage	
  

786k	
  cores	
  
8.15	
  PF/s	
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Quad	
  FPU	
  (QPU)	
  
DMA	
  unit	
  
List-­‐based	
  prefetcher	
  
TM	
  (Transac,onal	
  Memory)	
  
SE	
  (Specula,ve	
  Execu,on)	
  
Wakeup-­‐Unit	
  
Scalable	
  Atomic	
  Opera,ons	
  

TYPE:	
  vector4double	
  A;	
  	
  
Loads	
  and	
  stores	
  
Unary	
  opera,ons	
  
Binary	
  opera,ons	
  
Mul,ply-­‐add	
  opera,ons	
  
Special	
  func,ons	
  

BGQ – High Performance features 

Instruc,on	
  Extensions	
  (QPX)	
  to	
  PowerISA	
  
4-­‐wide	
  double	
  precision	
  FPU	
  SIMD	
  (BG/L,P	
  are	
  
2-­‐wide)	
  usable	
  as:	
  

	
  scalar	
  FPU	
  
	
  4-­‐wide	
  FPU	
  SIMD	
  	
  
	
  2-­‐wide	
  complex	
  arithme,c	
  SIMD	
  

Alached	
  to	
  AXU	
  port	
  of	
  A2	
  core	
  –	
  A2	
  issues	
  
one	
  instruc,on/cycle	
  to	
  AXU	
  
8	
  concurrent	
  floa,ng	
  point	
  opera,ons	
  (FMA)	
  +	
  
load	
  +store	
  
§  6	
  stage	
  pipeline	
  
Permute	
  instruc,ons	
  to	
  reorganize	
  vector	
  data	
  

	
  supports	
  a	
  mul,tude	
  of	
  data	
  
alignments	
  

4R/2W	
  register	
  file	
  
32x32	
  bytes	
  per	
  thread	
  

32B	
  (256	
  bits)	
  data	
  path	
  to/from	
  L1	
  cache	
  

Intrinsic:	
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Shape the future of Power Architecture® Technology
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-­‐	
  	
  	
  	
  The	
  performance	
  comes	
  from	
  the	
  quad pipe	
  Floa,ng point	
  unit.	
  
-­‐  Each	
  cycle,	
  the	
  quad	
  FPU,	
  can	
  serve	
  as	
  a	
  simple	
  scalar	
  FPU	
  or	
  a	
  four wide	
  SIMD	
  

FPU,	
  or	
  it	
  can	
  perform	
  two	
  complex arithme,c	
  SIMD	
  opera,ons.	
  	
  
-­‐  All	
  of	
  these	
  opera,ons	
  can	
  be	
  single 	
  or	
  double precision.	
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Einspline 

Eval_z:	
  
	
  Evalua,on	
  of	
  spline	
  coefficients	
  (complex)	
  
  
 
for ( i = 0; i < 64; i++ ){    
   s = d[i]; 
   p = (double *)coefs[i]; 
   for ( n = 0; n < M - rem ; n = n + 8){    
      double a0, a1,.., a7;  
      double b0, b1, .., b7;  
 
      a0 = v[n+0]; 
      //code 
      a7 = v[n+7]; 
               
      b0 = p[n+0]; 
      //code 
      b7 = p[n+7]; 
  
     //operations  
      a0=a0+s*b0;  
      ..  
      v[n+0]=a0; 
       .. 
}} 

Using	
  QPX	
  	
  
  
 
for ( i = 0; i < 64; i++ ){    
   s = d[i]; 
     
   p = (double *)coefs[i]; 
   vector4double t = { s, s, s, s }; 
   for ( n = 0; n < M - rem ; n = n + 8){    
    vector4double f0, f1;  
    vector4double g0, g1;  
 
     
 
          g0 = vec_ld( j,    p ); 
          g1 = vec_ld( j+32, p ); 
 
          f0 = vec_ld( j,    v ); 
          f1 = vec_ld( j+32, v ); 
 
          f0 = vec_madd( t, g0, f0 ); 
          f1 = vec_madd( t, g1, f1 ); 
 
          vec_st( f0, j,    v ); 
          vec_st( f1, j+32, v ); 
}} 



QMC Modelization 

	
  The	
  many-­‐body	
  trial	
  wavefunc,on	
   !T (R) = J R( )!AS R( ) = eJ1+J2+.. CkDk
"(!)Dk

#(!)
k

M
$

J1 = u1 ri ! rl( )
l

Nions

"
i

N

"

J2 = u2 ri ! rj( )
i" j

N

#

Correla,on	
  (Jastrow)	
   An,-­‐symmetric	
  func,on	
  (Pauli	
  principle)	
  	
  

Dk
! =

"1 r1( ) ! !1 rN!( )
! " !

!
N! r1( ) ! !

N! r
N!( )

Single-­‐par,cle	
  orbitals	
  	
   !i = Cl
i!l

l

l=Nb

"

Basis	
  sets:	
  molecular	
  orbitals,	
  
plane-­‐wave,	
  grid-­‐based	
  orbitals…	
   !l

Many	
  methods	
  of	
  approxima,ng	
  the	
  plane-­‐wave-­‐represented	
  single-­‐par,cle	
  orbitals	
  
with	
  polynomials:	
  

	
  -­‐B-­‐spline	
  approxima,on	
  in	
  QMC,	
  report	
  significant	
  reduc,on	
  in	
  ,me	
  of	
  
calcula,on	
  while	
  maintaining	
  plane-­‐wave-­‐level	
  accuracy	
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Profiling 
System:	
  

–  Ar	
  Solid	
  –	
  32	
  atoms	
  –	
  256	
  electrons	
  –	
  B-­‐splines	
  representa,on	
  of	
  WF	
  (1.9Gb)	
  :	
  	
  
–  256	
  nodes	
  –	
  32	
  threads	
  –	
  2	
  Walkers	
  per	
  thread	
  

	
  
Flat	
  profile:	
  	
  
Total	
  run	
  Nme:	
  53min40	
  
Each	
  sample	
  counts	
  as	
  0.01	
  seconds.	
  
%	
  	
  	
  cumula,ve	
  	
  	
  self	
  	
  	
  	
  	
  self	
  	
  	
  	
  	
  total	
  
	
  ,me	
  	
  	
  seconds	
  	
  	
  seconds	
  	
  	
  	
  calls	
  	
  Ts/call	
  	
  Ts/call	
  	
  name	
  	
  	
  	
  	
  	
  	
  
56.95	
  	
  58369.57	
  58369.57	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .eval_mulN_UBspline_3d_z_vgh	
  	
  
14.02	
  	
  72738.82	
  14369.25	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .eval_mulN_UBspline_3d_z	
  	
  	
  
2.11	
  	
  77918.51	
  	
  2161.01	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  SymmetricDTD	
  	
  	
  	
  
1.70	
  	
  79663.07	
  	
  1744.56	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  EinsplineSetExtended::evaluate	
  	
  

Profile	
  with	
  original	
  version	
  of	
  QMCPACK	
  

EvaluaNon	
  of	
  spline	
  
coefficients	
  (complex)	
  

EvaluaNon	
  of	
  spline,	
  gradient	
  and	
  
hessian	
  coefficients	
  (complex)	
  

71%	
  of	
  the	
  applica,on	
  ,me	
  spent	
  in	
  the	
  Spline	
  evalua,on	
  of	
  the	
  Wave	
  Func,on	
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Optimization 

-­‐>	
  2	
  algorithms	
  	
  accessing	
  memory	
  horizontally	
  or	
  ver,cally	
  over	
  the	
  {Points	
  in	
  space;	
  
minicube	
  around	
  the	
  point}	
  	
  	
  	
  

Important	
  reduc,on	
  of	
  the	
  number	
  of	
  arithme,c	
  opera,ons	
  

-­‐>	
  Complete	
  rewri,ng	
  of	
  the	
  func,ons	
  with	
  QPX	
  intrinsics	
  	
  

-­‐	
  Increase	
  of	
  the	
  number	
  of	
  floa,ng	
  point	
  opera,ons	
  
-­‐	
  Reduc,on	
  of	
  the	
  number	
  of	
  cycles	
  per	
  opera,on	
  

-­‐>	
  Manual	
  memory	
  prefetching	
  when	
  possible	
  

Increase	
  the	
  availability	
  of	
  data	
  in	
  the	
  L1	
  cache	
  	
  	
  



Profiling 

Speed	
  up	
   Eval_Z	
   Eval_D	
   Eval_S	
   Eval_Z_VGH	
   Eval_D_VGH	
   Eval_S_VGH	
  

Algorithm B 0.38 0.81 0.39 1.59 0.93 1.62 

Algorithm M 2.48 0.91 1.02 2.15 1.01 0.95 

Algorithm (X)  
with QPX 

3.94 
(Algo. M) 

1.08 
(Algo. M) 

1.26 
(Algo. M) 

7.62 
(Algo. B) 

1.58 
(Algo.B) 

1.31 
(AlgoB) 

QPX + 
Prefetch 4.25 1.23 1.81 - - - 

Eval_Z	
   	
  Complex	
  Double	
  	
  
Eval_D 	
  Double	
  
Eval_S 	
  Float	
  

Eval_Z_VGH	
   	
  Complex	
  Double	
  	
  
Eval_D_VGH 	
  Double	
  
Eval_S_VGH 	
  Float	
  

Coefficients	
  (type)	
   Coefficients,	
  Gradients,	
  Hessian	
  (type)	
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Profiling 
System:	
  

–  Ar	
  Solid	
  –	
  32	
  atoms	
  –	
  256	
  electrons	
  –	
  Bsplines	
  WF	
  (1.9Gb)	
  :	
  	
  
–  256	
  nodes	
  –	
  32	
  threads	
  –	
  2	
  Walkers	
  per	
  thread	
  

Profile	
  with	
  QPX	
  and	
  Prefetch	
  

Flat	
  profile:	
  
Total	
  run	
  Nme:	
  20min03	
  
Each	
  sample	
  counts	
  as	
  0.01	
  seconds.	
  
	
  	
  %	
  	
  	
  cumula,ve	
  	
  	
  self	
  
	
  ,me	
  	
  	
  seconds	
  	
  	
  seconds	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,me	
  	
  	
  seconds	
  	
  	
  seconds	
  
	
  	
  14.08	
  	
  	
  5380.43	
  	
  5380.43	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .eval_mulN_UBspline_3d_z_vgh	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  56.95	
  	
  58369.57	
  58369.5	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  8.25	
  	
  12270.83	
  	
  3152.52	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .eval_mulN_UBspline_3d_z	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  14.02	
  	
  72738.82	
  14369.25	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  5.68	
  	
  14441.45	
  	
  2170.62	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  .SymmetricDTD	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  2.11	
  	
  77918.51	
  	
  2161.01	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
	
  	
  	
  	
  	
  	
  4.85	
  	
  16292.97	
  	
  1851.52	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  EinsplineSetExtended::evaluate	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  1.70	
  	
  79663.07	
  	
  1744.5	
  
	
  	
  	
  	
  	
  	
  	
  	
  

Profile	
  with	
  Original	
  Algoritm	
  

Flat	
  profile:	
  
Total	
  run	
  Nme:	
  53min40	
  

Each	
  sample	
  counts	
  as	
  0.01	
  seconds.	
  
	
  	
  %	
  	
  	
  cumula,ve	
  	
  	
  self	
  

Total	
  run	
  Nme	
  Speedup	
  of	
  2.68	
  Nmes	
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HPM PROFILING 

27.644.290.379.027   All XU Instruction 
22.786.190.220.714   All AXU Instruction 
43.043.218.198.088   FP Operations Group 1 
  
Derived metrics for code block "mpiAll" averaged 
over process(es) on node <0,0,0,0,0>: 
Instruction mix:  FPU = 45.18 %,  FXU = 54.82 % 
Instructions per cycle completed per core = 
0.6138 
Per cent of max issue rate per core = 33.65 % 
Total weighted GFlops for this node = 13.412 
Loads that hit in L1 d-cache =  94.03 % 
                  L1P buffer =   5.36 % 
                  L2 cache   =   0.35 % 
                  DDR        =   0.26 % 
DDR traffic for the node: ld = 1.508, st = 
0.540, total = 2.049 (Bytes/cycle) 

 8.581.366.867.332   All XU Instruction 
 4.896.512.230.816   All AXU Instruction 
13.017.533.928.058   FP Operations Group 1 
  
Derived metrics for code block "mpiAll" averaged 
over process(es) on node <0,0,0,0,0>: 
Instruction mix:  FPU = 36.33 %,  FXU = 63.67 % 
Instructions per cycle completed per core = 
0.4417 
Per cent of max issue rate per core = 28.12 % 
Total weighted GFlops for this node = 10.922 
Loads that hit in L1 d-cache =  88.60 % 
                  L1P buffer =   5.92 % 
                  L2 cache   =   4.50 % 
                  DDR        =   0.98 % 
DDR traffic for the node: ld = 3.503, st = 
1.101, total = 4.604 (Bytes/cycle) 

Percentage	
  of	
  peak=	
  5.33%	
  	
  Percentage	
  of	
  peak=	
  6.55%	
  	
  

Total	
  run	
  Nme	
  Speedup	
  of	
  2.68	
  Nmes	
  	
  
	
  
	
  

Original	
  Code	
   BGQ	
  op,mized	
  Code	
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QMCPACK – performance on Blue Gene/Q 

Applica,on	
  speedup	
  using	
  QPX	
  and	
  prefetching	
  is	
  2.68	
  folds	
  from	
  original	
  
Algorithm.	
  	
  	
  	
  

1	
   1	
   1	
  

2.08	
  

1.01	
   1.1	
  

2.68	
  

1.09	
   1.21	
  

0	
  

0.5	
  

1	
  

1.5	
  

2	
  

2.5	
  

3	
  

COMPLEX	
   REAL	
  -­‐	
  Double	
  Precision	
   REAL	
  -­‐	
  Single	
  Precision	
  

Original	
   NoQPX	
   QPX	
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QMC Simulations DataBase for Predictive Theory and Modeling Kim

Figure 3: (a) Weak and (b) strong scaling of 4x4 graphite system (256 electrons). The numbers
in the parenthesis denote the number of nodes for the baseline on each architecture. For weak-
scaling runs, we fix the target walkers per node at 128 and varies the number of nodes. For
strong-scaling runs, the total number of walkers is fixed at 131K walkers on Titan. Not shown in
(b) is 2x speed up of the baseline with GPUs over with CPUs on Titan. The arrow corresponds
to the crossing point below which GPU performs better than CPUs.

depends on many variables, e.g., the problem size, the number of k-points and the platform.

Our request is based on our performance data with these variables on Titan and Mira, in-

cluding the time per MC step with respect to the problem size, ranging ∼ 102−104 electrons.

A median QMC run of 500 electrons to complete step ii) and iii) uses 2048 Titan nodes or

4096 Blue Gene/Q nodes for 4 hours, amounting to 250K core hours. The requested re-

sources correspond to 200M = 20 systems× 40 configuration× 250K. The detailed resource

justifications for the milestones of Year 1 are presented in Sec. 2.1

We have great control and flexibility over amount of parallelization in each calculation.

Multiple k-points are executed in parallel. In the best case scenario, we can use the entire

machine and run many simulations simultaneously. Most of our runs will be able to utilize

20% of Mira and Titan. Our workflow tools allows us to automate QMC runs involving

multiple ES codes (e.g., Quantum Espresso, GAMESS), conversion tools and QMCPACK

and to manage jobs to increase the throughput.

3.3 Parallel Performance

We achieve high computational and parallel efficiency using MPI+X hybrid programming

model, where X is OpenMP threads on x86 or Blue Gene/Q cores and CUDA on GPUs.

Each thread (GPU) manages a set of Walkers. The objects associated with ΨT and Ĥ are

replicated on all the threads except for large, read-only objects, such as B-spline tables.

They are allocated at the MPI task (node) level and shared among all the threads on a

node, significantly reducing the memory footprint of the B-spline representation as well as

reducing communication overhead. Only the performance of collectives at the extremely

scales will affect the parallel efficiency.

The QMC efficiency is measured by the wall-clock time to achieve a target error bar δ which

12
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Applications on van der Waals dominated systems 
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Van	
  der	
  Waals	
  forces	
  are	
  important	
  	
  
	
  -­‐>	
  Noble	
  gases	
  are	
  proto-­‐typical!	
  We	
  use	
  Ar	
  as	
  a	
  case	
  of	
  principle.	
  

-­‐  London	
  (C6/R6)	
  widely	
  used	
  in	
  force	
  fields	
  (Lennard-­‐Jones	
  tail)	
  
-­‐  Axilrod-­‐Teller-­‐Muto	
  (C9/R9)	
  is	
  3-­‐body	
  analogue	
  

Dispersion	
  Coefficients	
  (C6,	
  C9)	
  	
  

W(R)=-­‐C6/R6	
  

W(R)=C9	
  (3	
  cos[ϕ]cos[ϕ]cos[ϕ]+	
  1)/R9	
  

London1,2	
  

Axilrod-­‐Teller-­‐Muto3	
  

1,	
  W.	
  Heitler	
  and	
  F.	
  London,	
  Z.	
  Phys.	
  44,	
  455	
  (1927)	
  
2	
  R.	
  Eisenschitz	
  and	
  F.	
  London,	
  Z.	
  Phys.	
  60,	
  491	
  (1930)	
  
3	
  B.	
  M.	
  Axilrod	
  and	
  E.	
  Teller,	
  J.	
  Chem.	
  Phys.	
  11,	
  299	
  (1943)	
  

cifically, we will first briefly review dispersion contributions
to interatomic potentials at typical equilibrium geometries
using the three-body Axilrod–Teller–Muto expression.25,26

Then, we will discuss the necessary triple dipole C9 coeffi-
cients that are obtained in analogy to the recently devised
scheme for predicting dynamic double dipole C6 from elec-
tron densities.36 Within this scheme, atomic C6 and C9 coef-
ficients depend on the chemical environment of each atom,
and therefore become functionals of the electron density.
Thereafter we will shift focus to the treatment of interatomic
equilibrium distances, as they occur in a broad variety of
vdW systems. The two- and three-body dispersion energies
are damped at short distances according to an adapted two-
body potential following the work of Tang and Toennies.6,37

For He–Xe rare gas dimer results from literature, we found a
linear correlation between van der Waals radii and Tang-
Toennies !TT" range parameters which we exploit to com-
pute the range parameters from dynamic van der Waals radii
!determined “on the fly” from the electron density". An in-
terpolation of literature values for He and Ar trimers yields a
similar relationship for TT range parameters that damp the
three-body contribution. The first resulting dispersion energy
estimates are consistent with results from symmetry-adapted
perturbation theory !SAPT" where available.38,39 We will
proceed with a comparison of the two- and three-body dis-
persion energies to experimental or high-level theoretical
binding and cohesive energies for a broad variety of systems.
Numerical estimates are presented for the S22 data set,9 a
range of large molecular and condensed matter systems in-
cluding bilayer graphene, ice, C60-dimer, benzene crystal, di-
hydrofolate reductasee !DHFR" protein, double stranded
DNA, ! helical polyalanine decamer, intercalator drug
ellipticine-DNA complex, 42 base pairs from the JSCH-2005
database,9 and several molecular crystals from a crystal
structure blind test.40 Finally, we will discuss impact and
potential future applications of the here presented scheme.

Various assumptions underlie our predictions. First of
all, we use dispersion coefficients that are derived from an
isotropic model of atoms in molecules !Hirshfeld partition-
ing". Second, all our C6 and C9 interactions, inter- as well as
intramolecular, are assumed to be free of dynamic screening
effects due to the surrounding electronic and nuclear envi-
ronment. In particular, we expect this assumption to be ques-
tionable for solids where the screening is known to play a
significant role.41 Further assumptions include the specific
form of the damping function, which is strictly valid only for
interactions between spherical atoms. Approximations made
within the determination of the dispersion coefficients ac-
cording to Ref. 36 are quantified by comparison to reliable
reference data for molecules.

Our main finding is that the three-body dispersion en-
ergy is not negligible even though it is generally smaller than
15% of binding or cohesive energies. For some relevant sys-
tems, however, such as bilayer graphene, this contribution
can reach up to 50% of relevant binding energies. The mag-
nitude of three-body dispersion energy can be large enough
to affect rankings of energetically competing dimer conform-
ers or molecular crystal morphologies. The two-body contri-
bution is found in many cases to be equal or larger than the

intermolecular binding energies or cohesive energies of sol-
ids, a finding that underscores the need for accurate ap-
proaches.

II. THEORY

A. Interatomic dispersion energies

The dispersion contribution to the energy of an ensemble
of atoms #I$ residing at #RI$ can be written as a many-body
expansion of potentials,

Edisp!#RI$" =
1
2%

IJ
E!2"!RI,RJ" +

1
6%

IJK
E!3"!RI,RJ,RK" + HOT,

!1"

where HOT are the higher order terms. In the dissociative
limit or for !spherical" neutral atoms with nonoverlapping
electron density these terms correspond to

E!2"!RI,RJ" = −
C6IJ

RIJ
6 −

C8IJ

RIJ
8 −

C10IJ

RIJ
10 − HOT, !2"

E!3"!RI,RJ,RK" = C9IJK

3 cos&"I'cos&"J'cos&"K' + 1

RIJ
3 RIK

3 RJK
3 + HOT,

!3"

where RIJ= (RI−RJ( and #"i$ are the angles in atomic tri-
angle. The first term of the three-body dispersion contribu-
tion to the total energy of three atoms, I ,J ,K, is given by the
Axilrod–Teller–Muto expression.25,26 Figure 1 illustrates the
behavior of this term for an isosceles triangle as a function of
one angle.

B. Dispersion coefficients

The Casimir–Polder integral,

C6IJ
=

3
#
)

0

$

d%!I!i%"!J!i%" , !4"

FIG. 1. Axilrod–Teller–Muto three-body energy !E!3" /C9IJK
" !solid black

line" in an isosceles triangle as a function of " according to Eq. !3" for
RIJ=RJK=1. The red solid curve is the damping function of Eq. !13". The
red dashed curve corresponds to the product of the two functions.

234109-2 O. Anatole von Lilienfeld and A. Tkatchenko J. Chem. Phys. 132, 234109 !2010"
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Van	
  der	
  Waals	
  forces	
  are	
  important	
  	
  
	
  -­‐>	
  Noble	
  gases	
  are	
  proto-­‐typical!	
  We	
  use	
  Ar	
  as	
  a	
  case	
  of	
  principle.	
  

-­‐  London	
  (C6/R6)	
  widely	
  used	
  in	
  force	
  fields	
  (Lennard-­‐Jones	
  tail)	
  
-­‐  Axilrod-­‐Teller-­‐Muto	
  (C9/R9)	
  is	
  3-­‐body	
  analogue	
  

	
  -­‐>	
  We	
  apply	
  the	
  method	
  to	
  Ellip,cine	
  and	
  DNA	
  

-­‐ 	
  Binding	
  Energy	
  of	
  the	
  drug	
  Ellip,cine	
  to	
  DNA	
  

	
  -­‐>	
  Argon	
  EOS	
  	
  

-­‐ 	
  Evalua,on	
  of	
  the	
  2body,	
  3	
  body	
  and	
  MBC	
  to	
  the	
  crystal	
  solid	
  (in	
  progress)	
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DFT	
  Calcula,on	
  (LDA	
  fun,onal)	
  
	
  
	
  

One-­‐Body	
  +	
  Two-­‐body	
  Jastrow	
  
	
  
	
  

Varia,onal	
  Monte	
  Carlo	
  	
  
	
  
	
  

Diffusion	
  Monte	
  Carlo	
  
	
  

-­‐	
  We	
  Solve	
  the	
  many-­‐body	
  Schrodinger	
  equa,on	
  and	
  we	
  express	
  the	
  wavefunc,on	
  as	
  
follow;	
  

Trial	
  Wavefunc,on	
  
(PWSCF)	
  

Op,miza,on	
  of	
  the	
  factors	
  
(convergence	
  using	
  VMC)	
  	
  

New	
  Trial	
  Wavefunc,on	
  

!T x1, x1,.., xN( ) = J x1, x1,.., xN( )!AS x1, x1,.., xN( )

J1(
!
R) = exp bakria + cak( )vak ria( )

k
!
"

#
$

%

&
'

ia
(

J2 (
!
R) = exp bkrij + ck( )vk rij( )

k
!
"

#
$

%

&
'

i< j
(

EVMC =min! !T

!
R;!( ) Ĥ !T

!
R;!( )

EDMC = !0 Ĥ !T ,!0 = lim""#
exp$"Ĥ !T

-­‐	
  Solid:	
  	
  Correc,ons	
  to	
  finite	
  sizes	
  effects,	
  Kine,c	
  and	
  MPC,	
  	
  twists	
  averaging	
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a	
  Experimental,	
  P.	
  R.	
  Herman,	
  P.	
  E.	
  LaRocque,	
  and	
  B.	
  P.	
  Stoicheff,	
  J.	
  Chem.	
  Phys.	
  88,	
  4535	
  (1988)	
  	
  
b	
  R.	
  Podeszwa	
  and	
  K.	
  Szalewicz,	
  J.	
  Chem.	
  Phys.	
  126,	
  194102	
  (2007)	
  	
  
C	
  O.	
  A.	
  von	
  Lilienfeld	
  and	
  A.	
  Tkatchenko,	
  J.	
  Chem.	
  Phys.	
  132,	
  234109	
  (2010)	
  

dAr-­‐Ar	
  
(Å)	
  

E(2)
(meV)	
  

E(3)
(meV)	
  

C6	
   C9	
  

This	
  
Work	
  

3.757	
   -­‐12.232	
  
±0.987	
  

0.289	
  
±0.567	
  

63.1	
   517.6	
  

Ref.	
   3.76a	
   -­‐12.3a	
   0.3b	
   64.3c	
   518c	
  

Argon Systems 

3 4 5 6
                          d (Å)
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Two body contributions in Argon dimer
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-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4.5  5  5.5  6  6.5  7  7.5  8

En
er

gy
 (e

V)

Lattice constant (angstrom)

QMC FCC energies for 108 atom supercell of Ar

Binding energy (from fit) =  88.1, with qha =  80.3 +/-  1.0 meV 
Binding energy (from isolated) = 111.6, with qha = 103.8 +/-  1.0 meV 
        experiment =  80.1 meV
Bulk Modulus =   3.8, with qha =   3.3 +/-  0.1 GPa 
        experiment =   2.7 GPa

Lattice Constant =  5.280, with qha =  5.340 +/- 0.014 Angstrom 
        experiment =  5.311 Angstrom

Vinet Fit Goodness (reduced chisquare) = 3.24

dmc

Argon Solid 
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Argon Solid 
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Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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(11) Šponer, J.; Leszczynski, J.; Vetterl, V.; Hobza, P. J. Biomol. Struct. Dyn.
1996, 13, 695-706.

(12) Elcock, A. H.; Rodger, A.; Richards, W. G. Biopolymers 1996, 39, 309-
326.

(13) Galli, G.; Parinello, M. In Ab Initio Molecular Dynamics: Principles and
Practical Implementation, in Computer Simulation in Material Science;
Meyer, M., Pontikik, V., Eds.; Kluwer Academic: Dordrecht, 1991.

(14) Parinello, M. Solid State Commun. 1997, 102, 107.

Chart 1

Stacking between Intercalators and DNA Base Pairs AR T I C L E S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 13, 2002 3367

-­‐	
  Ellip,cine	
  is	
  a	
  planar	
  polycyclic	
  aroma,c	
  molecule	
  	
  
-­‐	
  Bind	
  to	
  DNA	
  by	
  non-­‐covalent	
  pi-­‐pi-­‐stacking	
  with	
  the	
  nucleic	
  
acid	
  Watson-­‐Crick	
  base	
  pairs	
  	
  
-­‐	
  Binding	
  energy	
  is	
  directly	
  correlated	
  to	
  biological	
  ac,vity	
  of	
  
the	
  molecule	
  in	
  cancer	
  treatment	
  



24	
  

Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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field simulations. The electron density of the AT-E + and
AT-E complexes has been analyzed further. Upon protonation,
a new σ bond is formed resulting in an increase in the in-plane
electron density. To compensate for this change, the electron
density in the π system of protonated ellipticine is slightly
depleted.
Table 7 and Figure 4 summarize the results of DCACP-BLYP

geometry optimizations on the five selected ellip-WC com-
plexes. The interaction energy (∆EAT-In/GC-In

opt ) follows the
same trend as observed in calculations using rigid monomer
geometries (∆Efix, Table 6) but the values are 10-20% larger.
The contributions to the interaction energy can be roughly
separated into dispersion, multipole-multipole interactions,
H-bonding, and for charged complexes, multipole-charge in-
teractions. The deformation of the planar WC base pair leads
to slightly weaker H-bonds: the H-bond strength (∆EA-T/G-C

fix ),
on average, is roughly 1.0 kcal/mol weaker in the significantly
deformed charged ellip-WC complexes than the corresponding
isolated WC base pairs. In neutral complexes it is only weaker
by roughly 0.3 kcal/mol due to the largely preserved planar
structures. The loss of H-bonding, however, is more than
compensated for by other favorable interactions introduced upon
deformation. An increase in the z component (z-axis as shown
in Figure 4) of the dipole moment results in a stronger dipole-

charge as well as dipole-dipole interactions in charged com-
plexes (Table 7). For comparison, the dipole moment of the
planar WC A‚‚‚T and G‚‚‚C base pairs is 1.42 and 5.87 Debye,
respectively. It is worth noting that the GC-E complex is
more stable than the AT-E complex by a small margin (0.8
kcal/mol), supporting the observation that ellipticine has a prefer-
ence to intercalate between d(GC)2 over d(AT)2 stacked pairs.73
Figure 5 summarizes the interaction energy of the intercalation

process evaluated at different intermoiety displacements ∆x in
increments of 1 Å. The maximal interaction is found at the fully
inserted configuration ∆x ) 0 Å, as expected, and a large well
depth, defined as Eint(∆x ) 5) - Eint(∆x ) 0), of roughly 20
kcal/mol is observed. At ∆x ) 5 Å, Eint is still very attractive.
The DCACP-BLYP Eint has been calculated with the isolated
moiety assuming the same geometry as found in the respective
optimized ellipticine-d(CG)2 complexes. In accommodating the
ellipticine molecule, DNA is known to unwind and lengthen;73
therefore, one could expect a large deformation energy upon
intercalation. Geometry optimization on the corresponding
intercalator-free 4-nucleobase complex, however, shows little
change in energy compared to the ones calculated with
geometries taken from the optimized ellipticine-d(CG)2 com-
plexes, indicating a presence of a local minima with large
interbase separation. This data is supported by the fact that base
pairs found at the ends of a DNA segment tend to be more
distorted with little π-π stacking interaction. Our results
indicate that the intercalation process is energetically favorable
and that the introduction of ellipticine in such positions should
not cause a large initial loss of π-π stacking. This may serve
as an alternative explanation as to why ellipticine prefers the
d(CpG)2 intercalation site as reported in ref 73. The binding
site preference of ellipticine observed in crystals of ref 73 could
be more related to the sequence position than to the nature of
the base. The use of larger DNA fragments or a fragment where
d(CpG)2 is not located at the extremities may be necessary for
a proper evaluation of the sequence-dependent binding prefer-
ence for intercalators.
To evaluate the effect of DCACPs, single-point energy

calculations with the DCACP-BLYP optimized geometries for
∆x ) 0 and 5 Å have been carried out using the BLYP
functional alone. For ∆x ) 0 Å, the resulting interaction energy
is repulsive (18.4 kcal/mol), whereas for ∆x) 5 Å, the complex
is slightly stable (-3.3 kcal/mol). The use of DCACPs is

TABLE 7: Interaction Energy of the Fully Relaxed
Ellip-WC Complexes (∆EAT-In/GC-In

opt , kcal/mol) and the
H-Bonding Energy of the WC Base Pair in the
Geometry-Optimized Ellip-WC Complexes
(∆EA-T/G-C

fix , kcal/mol)a

complex GC-9AE+ AT-E+ GC-E+ AT-E GC-E

∆EAT-In/GC-In
opt -25.02 -21.47 -20.47 -15.48 -16.56

∆EA-T/G-C
fix -27.23 -14.37 -27.18 -15.01 -27.97

µA-T/G-C 6.76 2.31 6.15 1.70 5.92
a The ∆EA-T/G-C

fix should be compared with the corresponding
values in Table 5. The overall dipole moment (µA-T/G-C, Debye) of
the WC base pair is also included. In denotes the corresponding
intercalator.

Figure 4. Optimized structures of ellip-WC complexes: (a)GC-
9AE+, (b) AT-E+, (c) GC-E+, (d) AT-E, and (e) GC-E. H atoms
are omitted for clarity.

Figure 5. Interaction energy profile of the intercalation process in the
ellipticine-d(CG)2 complex as a function of the intermoiety displace-
ment ∆x. The interaction energy (Eint, kcal/mol) is quoted in the plot.
The upper left and lower right insets correspond to the ∆x ) 0 and 5
Å configurations, respectively. H atoms are omitted for clarity.
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Within the framework of Kohn-Sham density functional theory, interaction energies of hydrogen bonded
and π-π stacked supramolecular complexes of aromatic heterocycles, nucleobase pairs, and complexes of
nucleobases with the anti-cancer agent ellipticine as well as its derivatives are evaluated. Dispersion-corrected
atom-centered potentials (DCACPs) are employed together with a generalized gradient approximation to the
exchange correlation functional. For all systems presented, the DCACP calculations are in very good agreement
with available post Hartree-Fock quantum chemical results. Estimates of 3-body contributions (<15% of
the respective interaction energy) and deformation energies (5-15% of the interaction energy) are given.
Based on our results, we predict a strongly bound interaction energy profile for the ellipticine intercalation
process with a stabilization of nearly 40 kcal/mol (deformation energy not taken into account) when fully
intercalated. The frontier orbitals of the intercalator-nucleobase complex and the corresponding non-intercalated
nucleobases are investigated and show significant changes upon intercalation. The results not only offer some
insights into the systems investigated but also suggest that DCACPs can serve as an effective way to achieve
higher accuracy in density functional theory without incurring an unaffordable computational overhead, paving
ways for more realistic studies on biomolecular complexes in the condensed phase.

1. Introduction
Noncovalent interactions between aromatic molecules are

believed to contribute significantly to the stability and confor-
mational variability of many biomacromolecules. In particular,
π-π interactions between nucleobases play a key role in
assembling various architectures such as DNA and RNA. These
interactions influence not only the structure and dynamics of
nucleic acids but also their interactions with polycyclic aromatic
molecules. The ability of these molecules to intercalate between
adjacent base pairs of DNA has attracted much attention owing
to the clinical success of many intercalators in antitumor
chemotherapy.1-3 Detailed knowledge of π-π interactions may
prove invaluable in designing novel DNA-intercalation drugs.
The macromolecular effects of intercalator-DNA interac-

tions, such as the unwinding and the lengthening of DNA, have
been studied extensively by experiments.4-8 These provide only
limited information on the nature of this association at the
atomistic level.9 On the other hand, computer simulations can
give atomistic insights into DNA-sequence specific interactions,
binding selectivity, and the role of solvents as well as ions in
the intercalation process. For this study, the alkaloid ellipticine
and its derivatives (Table 1) have been chosen. Ellipticine is
isolated from Ochrosia elliptica,10 and many of its more soluble
derivatives yield promising results for cancer treatments.11NMR
studies have shown intercalation to be a DNA binding mode
for ellipticine itself.12 Further searches for ellipticine derived

drugs are likely to profit from a detailed atomistic knowledge
of their binding mechanism.
For simple heterocycles or large polarizable aromatic poly-

cyclic compounds such as ellipticine and nucleobases, London
dispersion forces constitute one of the major stabilizing com-
ponents for their supramolecular complexation.13-16 Unfortu-
nately, a description of these forces requires an accurate
treatment of electron correlation effects; high-level correlated
ab initio methods such as coupled-cluster theory with large basis
sets or quantum Monte Carlo allow for an accurate treatment
but are not applicable for all but the smallest systems. The
tractable size of aromatic heterocycle complexes has prompted
studies using MP2 and CCSD(T) methods.17-23 For larger
systems such as stacked DNA base pairs, interaction energies
have been computed with ab initio methods, albeit to our
knowledge, CCSD(T) calculations with large basis set have yet
to be attempted. Instead, MP2 calculations in the complete basis
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TABLE 1: Structure of Ellipticine and Its Derivatives

intercalator charge R1 R2 R3
E 0 H H
9HE 0 OH H CH3
E + +1 H H H
9AE + +1 NH2 H H
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Ellipticine 
Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
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Chem. 1997, 18, 1136-1150.
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Level	
  of	
  theory	
   ΔEBind	
  (Kcal/mol)	
  

DFT1	
  	
   +5.2	
  

vdW-­‐TS1	
   -­‐46.6	
  

vdW-­‐TB1	
   -­‐39.1	
  

PBE-­‐D3/QZVP2	
   -­‐35.68	
  (D2)	
  ;	
  -­‐32.84	
  	
  (D2+D3)	
  

PBE-­‐NL/QZVP2	
   -­‐39.11	
  (D2)	
  ;	
  	
  -­‐36.27	
  (D2+D3)	
  

dDsC-­‐PBE/QZ4P2	
   -­‐40.91	
  (D2)	
  ;	
  -­‐38.07	
  (D2+D3)	
  

vdW-­‐MB1	
   -­‐34	
  

DMC	
   -­‐33.6	
  ±	
  0.9	
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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Aromatic polycyclic systems have, however, large polarizability;
therefore, dispersion energy must be one of the major stabilizing
components. Chemical experience tells us that, in the case of
polar (or even charged) systems, the polarization (induction)
energy might be important. Further, if one of the interacting
systems is a good electron donor and the other one an electron
acceptor, then the electron donor-electron acceptor (charge-
transfer) contribution plays a role. While the electrostatic and
dispersion components of stacking are well described by
presently available force fields,7,8 the polarization and charge-
transfer effects are ignored by current molecular modeling tools.
Because the role of individual energy contributions for the

intercalation process is not known, it would be desirable to
investigate the process by means of a method which includes
all interaction energy terms. This task can be achieved only by
ab initio quantum chemical (QM) calculations with the inclusion
of electron correlation effects. QM approaches such as semi-
empirical quantum chemical methods, the Hartree-Fock method,
and presently available DFT methods are not suitable for studies
of stacking complexes, as discussed in detail elsewhere.9
Empirical potentials include only some of the energy compo-
nents mentioned, and thus it is not clear how accurately they
describe the energetics of intercalation.
High-level calculations are prohibitively expensive for large

complexes, and there is so far only a single paper reporting
high-level QM calculations of stacking energies between
nucleobases and intercalator. Bondarev and co-workers thor-
oughly analyzed the stacking of a single DNA base with a small
monocation intercalator amiloride using the second-order
Moeller-Plesset (MP2) method with a 6-311++G** basis set,
and they compared their data with those obtained with the
AMBER force field.10 The authors also studied a larger cluster
(amiloride‚‚‚base pair) using a pair-additive empirical potential
(AMBER). Their study suggests that the ligand-nucleobase
binding is controlled by dispersion energy while, in optimal
geometries, about a third of the stabilization is due to the
Coulombic term. Rather surprisingly, they did not notice any
substantial effect of induction and/or charge transfer, in contrast
to our preceding study of stacking in protonated nucleobase
dimers.11 The study further indicates an excellent correlation
between AMBER and MP2 data, similar to our preceding studies
of base stacking.7-9,11,24 However, the AMBER force field
slightly overestimates the MP2 amiloride-base binding energies,
contrasting our data for protonated stacked nucleobase dimers.11
This is probably due to the basis set used by Bondarev et al.
They combined standard d polarization functions with additional
diffuse sp shells. Such a basis set still covers a smaller fraction
of intermolecular correlation (dispersion) effects compared with
basis sets having a diffuse polarization d function, which are
critical for proper evaluation of the dispersion energy.9
The intercalation process is, however, not governed by

interaction energy or enthalpy, but the entropy term should also

be considered. Thermodynamic characteristics of the interaction
of intercalators with DNA can be evaluated only by using
computer experiments, especially using molecular dynamics
(MD) simulations. The MD simulations were already used for
the description of the intercalation process.12 Generally, MD
(as well as Monte Carlo) simulations can be performed at any
theoretical level, including the empirical, semiempirical, or
nonempirical methods, yielding energy and forces. We have
witnessed enormous progress in recent years in the so-called
ab initio MD, but if the classical quantum chemical ab initio
method is adapted, the calculations are limited to small systems
only. MD simulations based on DFT gradients can access large
systems and time scales;13,14 however, DFT does not cover the
London dispersion energy.9
The vast majority of MD simulations are (and will be also in

the near future) based on the empirical potentials. The quality
of the MD simulations depends critically on the performance
of the simulation technique but also on the quality of the
empirical potential used. This fact is frequently ignored, and it
is often believed that sufficiently long MD simulations always
yield reliable results. One of the plausible ways to evaluate the
quality of an empirical potential prior to its use in MD
simulations is to compare its performance by nonempirical
correlated ab initio calculations.
The aim of this paper is to investigate properties of series of

isolated intercalators and their stacking interactions with base
pairs by means of a nonempirical correlated ab initio method
capable of providing a balanced inclusion of all contributions
to the interaction energies. The ab initio calculations will be
used subsequently for verification/parametrization of cheaper
methods suitable for large-scale MD simulations, namely an
AMBER type of pair-additive force field, its polarization variant,
and an approximate DFT method augmented by a dumped
dispersion energy term.
We have considered four intercalators with different charges

and electrostatic properties; their Lewis structures are presented
in Chart 1. Ethidium is often used as a probe for a study of the(4) Bailly, C.; Echepare, S.; Gago, F.; Waring, M. J. Anti-Cancer Drug Des.
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Chart 1

Stacking between Intercalators and DNA Base Pairs AR T I C L E S

J. AM. CHEM. SOC. 9 VOL. 124, NO. 13, 2002 3367

Level	
  of	
  theory	
   ΔEBind	
  (Kcal/mol)	
  

DFT1	
  	
   +5.2	
  

vdW-­‐TS1	
   -­‐46.6	
  

vdW-­‐TB1	
   -­‐39.1	
  

PBE-­‐D3/QZVP2	
   -­‐35.68	
  (D2)	
  ;	
  -­‐32.84	
  	
  (D2+D3)	
  

PBE-­‐NL/QZVP2	
   -­‐39.11	
  (D2)	
  ;	
  	
  -­‐36.27	
  (D2+D3)	
  

dDsC-­‐PBE/QZ4P2	
   -­‐40.91	
  (D2)	
  ;	
  -­‐38.07	
  (D2+D3)	
  

vdW-­‐MB1	
   -­‐34	
  

DMC	
   -­‐33.6	
  ±	
  0.9	
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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Van der Waals (vdW) interactions are ubiquitous in molecules
and condensed matter, and play a crucial role in determining the
structure, stability, and function for a wide variety of systems. The
accurate prediction of these interactions from first principles is a
substantial challenge because they are inherently quantum me-
chanical phenomena that arise from correlations between many
electrons within a given molecular system. We introduce an effi-
cient method that accurately describes the nonadditive many-body
vdW energy contributions arising from interactions that cannot be
modeled by an effective pairwise approach, and demonstrate that
such contributions can significantly exceed the energy of thermal
fluctuations—a critical accuracy threshold highly coveted during
molecular simulations—in the prediction of several relevant proper-
ties. Cases studied include the binding affinity of ellipticine, a DNA-
intercalating anticancer agent, the relative energetics between the
A- and B-conformations of DNA, and the thermodynamic stability
among competing paracetamol molecular crystal polymorphs. Our
findings suggest that inclusion of the many-body vdW energy is
essential for achieving chemical accuracy and therefore must be
accounted for in molecular simulations.

intermolecular interactions ∣ dispersion interactions ∣ force fields ∣
DNA stability ∣ polymorphism

Atomistic simulations of molecular ensembles have greatly
contributed to our understanding of the microscopic details

of matter and its physical and chemical properties. To treat rea-
listic molecular systems with thousands or even millions of atoms,
these simulations are typically based on models of interatomic
potentials that approximate the solution of the full quantum
mechanical many-electron problem (1, 2). Almost all of these
interatomic potentials utilize an effective interatomic pairwise
approximation to account for nonbonded interactions, the nota-
ble exception being polarizable force fields, which treat induction
(static) effects using mutually interacting sites (3, 4). Beyond
static polarization effects, fluctuations in the electron density
lead to dispersion, or van der Waals (vdW), interactions (5–7),
that are dynamic in nature and are of paramount importance for
seemingly different phenomena, including molecular crystal for-
mation, protein folding, drug binding, self-assembly of supramo-
lecular complexes, molecular recognition, and even the adhesion
of gecko setae on glass surfaces (8). An accurate description of
dispersion interactions represents a significant theoretical chal-
lenge because dispersion itself is an inherently quantum mechan-
ical phenomenon, arising from collective many-body plasmonic
excitations (9). As such, the role of many-body vdW interactions
has been recognized and studied for model systems, such as
chains, layers, and cubes (10–14), as well as for noble gas liquids
(15–17). Despite this fact, the nonadditive many-body (beyond
two-body) contributions to the vdW energy are not explicitly
included in most molecular simulations, favoring instead an effec-
tive C6∕R6 interatomic pairwise summation (18–22). Here we
demonstrate that many-body vdW interactions, which cannot be
captured using an effective pairwise approach, are of substantial
importance in the realistic modeling of molecular systems of
biological and chemical significance.

Results and Discussion
To accurately compute the nonadditive many-body vdWenergy, we
begin by performing a self-consistent quantum mechanical calcu-
lation to generate the molecular electron density using semilocal
density-functional theory (DFT) (23)—a method which accurately
treats electrostatics, induction, and hybridization effects, but lacks
the ability to describe dispersion interactions (24). We then utilize
the Hirshfeld, or stockholder, partitioning of the molecular elec-
tron density to derive a set of atomic frequency dependent polar-
izabilities that reflect the local chemical environment surrounding
each atom, as suggested by Tkatchenko and Scheffler (25). The
resulting atomic polarizabilities yieldC6 coefficients that are accu-
rate to ≈5% for a database of 1,225 atomic and molecular dimers
with reference values experimentally determined from refractive
index data. After representing the N atoms in a given molecular
system as a collection of isotropic three-dimensional quantum
harmonic oscillators (QHO), fully characterized by the aforemen-
tioned set of atomic frequency-dependent polarizabilities, we then
directly solve the Schrödinger equation corresponding to N fluc-
tuating and interacting QHOs within the dipole approximation
(10–12). By only including interactions between dipoles, diagona-
lization of the 3N × 3N interaction Hamiltonian yields the long-
range many-body vdW energy (vdW-MB) of the molecular system
in terms of coupled many-body (many-atom) eigenmodes or col-
lective plasmons (Fig. 1).

A crucial aspect of our approach is that the vdW-MB Hamil-
tonian, and therefore the vdW-MB energy expression, directly
follow from a rigorous derivation of the dipole-dipole interaction
tensor from a range-separated Coulomb potential (see Methods).
Therefore, the adjustment of a single physically motivated range-
separation parameter allows the vdW-MB method to be coupled
to a wide array of theoretical methods, ranging from classical
force fields to higher level quantum chemical calculations (26).
To accurately assess the underlying importance of the many-body
vdWenergy, we completed the coupling of the DFTand vdW-MB
methods described above by utilizing a range-separation para-
meter obtained from global optimization of the total DFT
+vdW-MB energy on the S22 test set, a widely employed bench-
mark database of noncovalent intermolecular interactions (27).
Consisting of 22 dimers of common organic molecules, the S22
test set includes prototypes for hydrogen-bonded, dispersion-
bound, and mixed electrostatic/dispersion stabilized complexes,
with reference interaction energies computed using CCSD(T),
the currently accepted “gold standard” quantum chemical meth-
od with an estimated accuracy of ≈1% (28, 29).

To elucidate the role of nonadditive many-body vdW energy
contributions in the theoretical prediction of molecular proper-
ties, the following models were constructed:
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underestimation of 4.1 kcal∕mol compared to the full vdW-MB
model. This additional stabilization of at least 4 kcal∕mol, arising
solely from nonadditive many-body vdW contributions, is a clear
illustration of the increasingly important role played by these
higher-order effects as molecular systems become larger and more
structurally complex than the small organic molecular dimers
considered before. In the context of predicting biomolecular ligand
affinities, the difference between the DNA-ellipticine binding
energies computed using the vdW-TB and vdW-MB models repre-
sents a marked discrepancy, as a decrease of about 1 kcal∕mol in
ΔGbind, the binding free energy, corresponds to an order of mag-
nitude decrease in the predicted equilibrium binding constant. In
fact, to capture the vdW-MB energy with chemical accuracy, i.e., to
within 1 kcal∕mol, one needs to include the contributions from all
terms up to vdW-7B in the many-body vdW energy expansion
(Fig. 2). Although there is no high-level benchmark data currently
available for ellipticine binding to DNA, our findings provide com-
pelling evidence that nonadditive many-body vdW interactions
play a substantial role in the binding of drugs to targets.

To further elucidate the role of the many-body vdW energy in
biological systems, we investigated the relative energetics between
the A- and B-conformations of DNA. By modeling each confor-
mer as a right-handed double-helix of fifteen Watson–Crick base
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vdW interactions were quite significant—the vdW-MB energy
contribution was nearly 170% (A:T) and 90% (C:G) larger than
the effective two-body vdW energy contribution. Hence, the vdW
contributions to the relative DNA conformational energetics are
dominated by many-body effects. Furthermore, the convergence
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for the modeling of DNA, it is evident that many-body vdW inter-
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counter pharmaceutical agent used worldwide for its analgesic
and antipyretic properties, which is experimentally known to have
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lattice energy competing for the global minimum (35). To com-
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an empirically parameterized effective pairwise vdW correction,
identified a new polymorph, P-IV, and predicted it to lie energe-
tically between P-I and P-II, thereby challenging experimentalists
to search for this new form of paracetamol (36). Once again, we
find that the inclusion of higher-order nonadditive many-body
vdW contributions makes a significant difference; at the vdW-MB
level, the P-IV polymorph is actually destabilized with respect to
P-I and P-II by 0.79 and 0.92 kcal∕mol∕paracetamol molecule,
respectively. Under the assumption that an essential condition
for the accessibility of a given molecular crystal polymorph is that
its energy lies within thermal energy (≈0.6 kcal∕mol) of the glo-
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P-II polymorphs amounts to a mere 0.14 kcal∕mol, which is con-
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the many-body vdW energy in the theoretical prediction of mo-
lecular properties; because the nonadditive many-body vdW en-
ergy contributions can be significantly larger than kT , our ability
to make reliable predictions about the thermodynamic stability
among competing molecular crystal polymorphs requires an ac-
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Previous studies of noble gas clusters and fluids (11, 15–17)
found repulsive many-body vdW contributions when compared
to the pairwise vdW energy. These findings contrast with our
result that the nonadditive many-body energy stabilizes the ellip-
ticine–DNA complex with respect to the effective pairwise model.
We explain this difference by the relatively complex molecular
geometries and higher polarizability densities utilized herein

Fig. 2. Percentagewise convergence of the individual vdW-NB contributions
with respect to the vdW-MB energy. Displayed cases include the binding
energy of the DNA-ellipticine complex (blue circles) and the relative binding
energies of a single base pair in A-DNA and B-DNA consisting of pure
adenine-thymine (black triangles) and pure cytosine-guanine (red squares)
sequences. The unfilled markers at N ¼ 2 correspond to the predictions
of the vdW-TB effective pairwise model for each of the aforementioned
systems.
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i. vdW-MB—the full DFT+vdW-MB model as defined above,
which includes all many-body energy contributions within the
dipole approximation. It utilizes a range-separation parameter
obtained via global optimization of the total DFT+vdW-MB
energy on the S22 benchmark database.

ii. vdW-NB—the N-body energy contribution in the full DFT
+vdW-MB model, utilizes the same range-separation para-
meter as the DFT+vdW-MB model.

iii. vdW-TB—an effective pairwise model, which computes the
dispersion energy only via two-body interactions. To fairly re-
present the pairwise dispersion energy employed in atomistic
force field simulations, we explicitly trained the vdW-TB mod-
el on the S22 benchmark database, which is the same database
used for training the full DFT+vdW-MB model. Therefore,
the vdW-TB model effectively mimics the shorter range many-
body terms by using a larger value of the range-separation
parameter than vdW-MB.

Comparisons made between the vdW-MB and vdW-TBmodels
quantify higher-order correlation effects that can only be cap-
tured by explicitly including the nonadditive many-body vdW
contributions beyond the two-body term and cannot be mimicked
by an effective pairwise approach. Comparisons made between
the vdW-MB and vdW-NB models distinguish contributions aris-
ing from different orders in the many-body vdW energy expan-
sion. Furthermore, we also include comparisons with a different
effective pairwise approach, namely the vdW-TS model (25),
which has been extensively used in the literature for many mole-
cular and condensed-matter systems. The vdW-TS method uses
an empirical Fermi-type damping function, which distinguishes
it from the range-separated Coulomb potential employed in the
vdW-TB and vdW-MB models.

We first assessed the performance of the vdW-MB method on
the aforementioned benchmark database of prototypical non-
covalent dimers, the S22 test set (27). The mean absolute (rela-
tive) error of the vdW-MBmodel on the complete S22 database is
0.26 kcal∕mol (6.2%) compared to 0.33 kcal∕mol (7.9%) for the
vdW-TB model. In comparison, the effective pairwise vdW-TS
approach yields an error of 0.32 kcal∕mol (10.3%). As one might
expect, the vdW-MB and vdW-TB models yield essentially the
same results for small hydrogen-bonded dimers and complexes
bound by predominantly electrostatic interactions, and in most
cases, the many-body effects were found to be repulsive. In fact,
the deviation between these models is almost negligible at
0.1 kcal∕mol, with the vdW-MB model yielding better overall
agreement with the CCSD(T) reference binding energies. How-

ever, when considering only the dispersion-bound complexes
in the S22 test set the deviation between the vdW-TB and vdW-
MB models is indeed more significant. For example, the vdW-TB
model underestimates the stability of the adenine-thymine stack
(Fig. 1) by ≈1 kcal∕mol, whereas inclusion of the nonadditive
many-body effects at the vdW-MB level reduces this error by an
order of magnitude, clearly illustrating both the limitations of an
effective pairwise approach and the importance of higher-order
correlation effects in one of the simplest prototypes for non-
bonded stacking interactions in DNA. Taking the analysis one
step further, we decomposed the vdW-MB energy for the ade-
nine-thymine complex and the other π-π stacking dimers in the
S22 test set, and found that the magnitude of the vdW-3B and
vdW-4B contributions were ≈30% and ≈10% of the pairwise
vdW-2B contribution, respectively.

We also extended our study to the larger S66 database, which
was recently designed to provide a well-balanced representation
of the intermolecular interactions found in bioorganic molecular
systems by including benchmark energetics for a wider array of
noncovalent binding motifs (30). In general, the same conclusions
found above hold for the S66 database, in that both vdW-MB
and vdW-TB are able to treat small electrostatically stabilized
molecular dimers with an exceptional yet similar degree of accu-
racy. Again, we noticed a significant discrepancy between the
performance of the vdW-MB and vdW-TB models when dealing
with the expanded selection of dispersion-bound complexes pre-
sent in the S66 database—vdW-MB consistently yields larger and
more accurate interaction energies than the vdW-TB effective
pairwise approach.

Having assessed the accuracy of the vdW-MBmethod for small
organic molecules, we now examine the role of the many-body
vdW energy in the theoretical prediction of binding affinities in
larger biomolecular systems. For this purpose, we revisited ellip-
ticine, an anticancer agent whose mode of action is based on
DNA intercalation and inhibition of the topoisomerase II enzyme
(31–33). In particular, we computed the many-body vdW energy
contributions to the binding energy of a model of the DNA-inter-
calation complex consisting of ellipticine sandwiched between
two Watson-Crick bonded cytosine-guanine base pairs linked by
their phosphate sugar puckers. The resulting energetics (Table 1)
confirm that vdW interactions are essential even for a qualitative
prediction of the binding energy in this system, as the DNA-
ellipticine complex is unbound at the DFT level of theory
(ΔEbind ¼ þ5.2 kcal∕mol). Inclusion of vdW interactions using
the vdW-TB model corrects the relative thermodynamic ordering
and stabilizes the DNA-ellipticine complex by 44.3 kcal∕mol, but
once again, the effective pairwise approach underestimates the
many-body vdW contribution to the binding energy. In fact, the
contribution from the nonadditive many-body vdW interactions
is quite significant in this system, increasing the overall binding
strength of the DNA-ellipticine complex from −39.1 kcal∕mol
(vdW-TB) to −50.7 kcal∕mol (vdW-MB). Furthermore, when
using the effective pairwise vdW-TS method (25), the DNA–ellip-
ticine binding energy is predicted to be −46.6 kcal∕mol, still an

Fig. 1. Graphical depiction of the coupled many-body vdW interactions pre-
sent in the adenine-thymine dimer, a prototypical model of π–π stacking in
DNA. Examples of two-, three-, and four-body contributions are illustrated by
the dotted (red), dashed (green), and solid (black) lines, respectively.

Table 1. Binding energies for the DNA–ellipticine complex
and DNA conformers

Level of theory ΔEbind ΔEA∶T
B−A ΔEC∶G

B−A

DFT +5.2 +4.2 +1.9
vdW-TS −46.6 +2.5 −3.7
vdW-TB −39.1 +2.6 −3.5
vdW-MB −50.7 −0.1 −8.2

(Left) Binding energies (ΔEbind) for the DNA–ellipticine complex in
kcal/mol. (Right) Relative conformational energies of A-DNA and
B-DNA (ΔEB−A ¼ EB − EA) consisting of pure adenine–thymine (A:T)
and cytosine–guanine (C:G) sequences in kcal/mol per bp. All DFT
calculations were performed using the PBE functional (37).
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vdW-4B contributions were ≈30% and ≈10% of the pairwise
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more accurate interaction energies than the vdW-TB effective
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vdW energy in the theoretical prediction of binding affinities in
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(31–33). In particular, we computed the many-body vdW energy
contributions to the binding energy of a model of the DNA-inter-
calation complex consisting of ellipticine sandwiched between
two Watson-Crick bonded cytosine-guanine base pairs linked by
their phosphate sugar puckers. The resulting energetics (Table 1)
confirm that vdW interactions are essential even for a qualitative
prediction of the binding energy in this system, as the DNA-
ellipticine complex is unbound at the DFT level of theory
(ΔEbind ¼ þ5.2 kcal∕mol). Inclusion of vdW interactions using
the vdW-TB model corrects the relative thermodynamic ordering
and stabilizes the DNA-ellipticine complex by 44.3 kcal∕mol, but
once again, the effective pairwise approach underestimates the
many-body vdW contribution to the binding energy. In fact, the
contribution from the nonadditive many-body vdW interactions
is quite significant in this system, increasing the overall binding
strength of the DNA-ellipticine complex from −39.1 kcal∕mol
(vdW-TB) to −50.7 kcal∕mol (vdW-MB). Furthermore, when
using the effective pairwise vdW-TS method (25), the DNA–ellip-
ticine binding energy is predicted to be −46.6 kcal∕mol, still an
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allocations of computer time, supporting resources, and data storage at the Argonne  
and Oak Ridge Leadership Computing Facilities (LCFs) for computationally intensive,  
large-scale research projects. 
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INCITE	
   ALCC	
   Director’s	
  
DiscreNonary	
  

Mission	
  
High-­‐risk,	
  high-­‐payoff	
  
science	
  that	
  requires	
  LCF-­‐
scale	
  resources*	
  

High-­‐risk,	
  high-­‐payoff	
  
science	
  aligned	
  with	
  DOE	
  
mission	
  

Strategic	
  LCF	
  goals	
  

Call	
  
	
  1x/year	
  –	
  (Closes	
  June)	
   1x/year	
  

(Closes	
  February)	
  
Rolling	
  

DuraNon	
   1-­‐3	
  years,	
  yearly	
  renewal	
   1	
  year	
   3m,6m,1	
  year	
  

Typical	
  Size	
   30	
  -­‐	
  40	
  
projects	
  

10M	
  -­‐	
  100M	
  
core-­‐hours/yr.	
  

5	
  -­‐	
  10	
  
projects	
  

1M	
  –	
  75M	
  	
  
core-­‐hours/yr.	
  

100s	
  of	
  
projects	
  

10K	
  –	
  1M	
  
core-­‐hours	
  

Review	
  
Process	
  

Scien,fic	
  
Peer-­‐Review	
  

Computa,onal	
  
Readiness	
  

Scien,fic	
  
Peer-­‐Review	
  

Computa,onal	
  
Readiness	
  

Strategic	
  impact	
  and	
  
feasibility	
  

Managed	
  By	
   INCITE	
  management	
  
commilee	
  (ALCF	
  &	
  OLCF)	
   DOE	
  Office	
  of	
  Science	
   LCF	
  management	
  	
  

Availability	
   Open to all scientific researchers and organizations 
 Capability >20% of cores 

60%	
   30%	
   10%	
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New	
  proposal	
  assessment Renewal	
  assessment 
Peer	
  review:	
  	
  
INCITE	
  panels 

•  Scien,fic	
  and/or	
  	
  
technical	
  merit	
  

•  Appropriateness	
  	
  
of	
  proposal	
  method,	
  
milestones	
  given	
  

•  Team	
  qualifica,ons	
  
•  Reasonableness	
  	
  
of	
  requested	
  resources 

•  Change	
  in	
  scope	
  
•  Met	
  milestones	
  
•  On	
  track	
  to	
  meet	
  	
  
future	
  milestones	
  

•  Scien,fic	
  and/or	
  technical	
  
merit 

ComputaNonal	
  
readiness	
  
review:	
  	
  

LCF	
  centers 

•  Technical	
  readiness	
  
•  Appropriateness	
  for	
  
requested	
  resources	
  	
  

•  Met	
  technical/	
  	
  
computa,onal	
  milestones	
  

•  On	
  track	
  to	
  meet	
  	
  
future	
  milestones	
  

Award	
  
Decisions 

•  INCITE	
  Awards	
  Commilee	
  comprised	
  of	
  LCF	
  directors,	
  INCITE	
  
program	
  manager,	
  LCF	
  directors	
  of	
  science,	
  sr.	
  management	
  

1	
  

2	
  


