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Overview

Summary of two closely-
related projects with tungsten
emphasis:
« Hydrogen precipitate model
— continuum-scale bubble growth
« Tritium plasma experiment
(TPE)

— plasma-driven permeation
system

— surface morphology
characterization




PART 1. HYDROGEN PRECIPITATE

MODEL




Continuum-scale finite difference model
enables simulations of bubble growth

Precipitation affects hydrogen diffusion in metals [W.R. Wampler, Nucl.
Fusion (2009)]

Motivation for further model develo

 DFT, MD, and Kinetic Monte Carlo reveal key nucleation and growth
mechanisms.

 Incorporate insight into continuum approach to model practical
environment

» Existing models (TMAP, DIFFUSE) exclude important physics (e.g.
precipitation)

dWe leverage metal tritides expertise at Sandia from 3He bubble growth
models [D.F. Cowgqill, Fusion Sci. & Technol. (2005)]

UAltered to simulate hydrogen bubbles:
« Different nucleation process [Henricksson Appl. Phys. Lett. (2008).]
LUse experiments to refine model.




Hydrogen precipitate growth in fungsten: experimental

findings

O Motivation: Development a continuum scale
model of hydrogen diffusion and
precipitation in tungsten.

O Previous work: Our approach leverages
previous model of He bubble in metal tritides
[Cowqill, Fusion Sci & Technol., 2005].

Focused ion beam (FIB) results:

* Profiled PLANSEE tungsten materials which had been
previously exposed in TPE: 70 eV D* ions, ®=1.1X1018
cm2s1, F=8.7X10%1 cm?, T=385 ° C. [Details in J.P.
Sharpe et al., J. Nucl. Mater.(2009).]

 Large blister in Fig. 1(b) has enlarged by crack growth.

« Small blister in Fig. 1(c) has grown by dislocation loop
punching.

« For comparison, a FIB profile of re-crystallized
tungsten exposed under similar conditions is shown in
Fig. (d). Image from [Lindig et al., Phys. Scr. (2009).]
Growth mechanism also appear to be due to dislocation
loop punching.
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Diffusion and trapping were modeled using a continuum-
scale approach

Diffusion: 00T

Basic 1-D diffusion equation assuming uniform
temperature.

internal pressure [GPa]
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Point defects:
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permitted to serve as nucleation sites for bubbles.) bubble radius [A]

Used approach of Ogorodnikova [J. Nucl. Mater.

2009] to address trapping and release: Bubble growth by loop punching
oCq (x,t)/ ot = (2Da/ 3)[Ciy (Nt — &t ) — (1285 /a3) exXp(—E; /kT)] || Loop punching condition:

J = inverse trap saturability; N, = trap density; C, = H PLp=> 2y/rytubl/ry
concentration in traps.

y = surface energy I, = bubble radius

. b = Burgers vector = shear stress
Trapping by bubbles: 8
Plot above shows the p , for W. For small
Modeled using a simple approach developed by Mills bubbles, p p is >10 GPa. Need equation of
[J. Appl. Phys. (1959)]. state to calculate H, per bubble from loop

punching stress.



Internal pressure within bubbles can exceed 1 GPa

H, equation of state (EOS):

Very high pressures (>1 Gpa) expected
within small hydrogen bubbles.

At 25 ° C, H, solidifies at p=5.7 GPa,
forming an hexagonal close-packed
molecular solid.

« Over the range of pressures of
interest for this work, we found Tkacz's
[J. Alloys & Compounds (2002)] EOS to
provide the best fit:

V= Ap_ll3 + Bp_Z/3 +Cp_4/3 +(D + ET)p_1

« San Marchi’'s simplified EOS is also
guite accurate at lower pressures:
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Equilibrium conditions dictate the when bubbles will grow

105 I_ 1 1 IIIIIII 1 1 IIIIIII 1 2‘5‘08“‘
4
When will the precipitate gas be in equilibrium with = 10
the hydrogen in solution? = 100k
g 10
10" |
100 ; 1 Lléléll é 1 Lllléléll ; 1 Llllélgl-l
1 10 100 1000
pressure [MPa]
T
o
=
&
Equilibrium conditions predict when precipitation is
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Contfinuum-scale approach enables rapid
solution of diffusion equation

Assume:

(a)Point defects saturable, do not behave as bubble nucleation
sites.

(b)Array of evenly-spaced sperhical bubbles.
(c)Bubble diameter smaller than inter-bubble spacings
(d)Slow thermal ramp (quasi-equilibrium is satisfied.)

Array of evenly-
spaced spherical
bubbles.

_______________________________________




Bassis for finite difference model:
need to integrate three coupled PDE's

Governing equation (1-D diffusion w / 2 sinkterms): o qr = Jur(x,t)/0t

otu(x,t)/ot = D(t) 0%u(x,t)/ox? —@—@

Flow into or out of the bubbles determined by local eq. conc.

g = dug (x,@: AtD (t)rg(x, t)Np(x) [ —@

Concentration at bubble surface determined by Sievert’s Law:

= @soexp<—Es/RT>

Fugacity (requires aforementioned EOS):

p
@p) =J0 (v(p,T)/RT — 1/p)dp




Simulated bubble sizes consistent
with experimental findings

« Assumed a pre-existing concentration of -
nucleation sites (eventually growing into Nt‘4"112 V\{
bubbles.) Nb_1?8 W :
- Traps fill first, followed by bubble growth. | [F=10% Diem=s, calculated near-
. Using realistic input conditions, depth surface conc. at the end of range from
profiles consistent with experimental F=Dulr. :
findings. r=2.5 nm for 100 eV D" ions
300 K 500 K
-1 T T T T T T T T -1 T T 11 | N N B N N S B B N N
10_2 i | | —X— U(>I<) [D/W] T 10_2 " \ | I—z— u(xl) [D/W] T
10°F \ —A Ut(X) [D/W]—:8104 10" —A Ut(X) [D/W] —:8104
10° W) DWIZs 0t u) PW] 3o
%‘ ot — A e g S b — ¥ [DW] 4 s
:C; 10—5 - -2 g é 10-5 | \ -2 g
g 10°F =4.10° 2 S 10°F ,10° £
$ 107 r 3 £ w0'f T =
Q 4 =~ o 14 ~
8 10°fF . ° 100 1,
10° () \L T 10° |
Lovaa v bl H 102 NI L. A i ol B e B 102
0 10 20 30 40 0 10 20 30 40

depth (microns) depth (microns)



PART 2: TRITIUM PLASMA

EXPERIMENT




Trittum plasma experiment overview

Tritium retention and plasma driven permeation studies in fusion reactor materials.

Primary objective: Understanding
tritium inventory issues in reactor
first walls. 500 Ci typical source

* Joint effort between Sandia Livermore
and Idaho National Laboratory
(INL).

* Unique capability to subject materials
to intense fluxes of T ions.

* Handling of neutron irradiated
samples.

e Tritium permeation measurements.
*  Tritium surface/depth profiling using
imaging plate scanner.

* INL collaborators: M. Shimada, J. P.
Sharpe

15000 Ci limit

Experiment History:

*  Originally developed at SNL as TPX
(1982), later moved to LANL (1993)
and INL (2002).

*  System presently located at the Safety
and Tritium Applied Research (STAR)
facility.

*  Restarted plasma operations in August
2007.



Operating with Tritfium

Use of tritium (even in trace
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TPE plasma discharge characteristics

Diagnostics:

Langmuir probe measurements at
locations near both the source and

target ends of the plasma chamber.

Optical spectrometer available at
target end (A=585-685 nm.)

Retention obtained by thermal
desorption spectroscopy (TDS).

Discharge Properties:

Electron temperature =8 - 15 eV
Electron density = 106 — 1018 m3
lon Flux = 10%° - 10?2 m%s!

lon Fluence = 1023 — 1026 m2

Plasma column FWHM =5 cm
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Planned TPE studies will focus on
understanding microstructure effects

Objective for upcoming work: perform experiments to
examine microstructure effects.

Present work aimed at eliminating uncertainties in the
Instrument:

— Eliminating C components in TPE

— Better thermal control of the target
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Development of plasma-driven
permeation experiments underway

« Plasma-driven tritium permeation using “realistic”
samples.

» Experiments part of the PSI-Science Center and
collaboration with INL

« Leverages unique capabilities of the tritium plasma
experiment (TPE)

Low-flux ion beam studies:

* Anderl (1992) (initial measurements, measured
recombination rate)

 Ueda (2011) compared different material structures

« Early high-flux attempts using TPE unsuccessful
(~1995) due to temperature control difficulties

Progress to date:

« First generation design completed; demonstrated
superior temperature control.

« (Gas-cooled design fabricated ready for testing.




Concluding Remarks

1 Successful development of a continuum-scale model of hydrogen
precipitate growth in tungsten, useful for predicting conditions
where bubble growth will occur.

[ Present work focuses on converting this to a finite difference
model of hydrogen precipitate growth.

[ Development of plasma-driven permeation target holder for TPE is
now underway; testing of first-generation device anticipated in
August.
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