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Overview

Summary of two closely-

related projects with tungsten 

emphasis:

• Hydrogen precipitate model

– continuum-scale bubble growth

• Tritium plasma experiment 

(TPE)

– plasma-driven permeation 

system

– surface morphology 

characterization



Part 1: hydrogen precipitate 

model
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Continuum-scale finite difference model 

enables simulations of bubble growth

Motivation for further model development:

• DFT, MD, and Kinetic Monte Carlo reveal key nucleation and growth 

mechanisms.

• Incorporate insight into continuum approach to model practical 

environment

• Existing models (TMAP, DIFFUSE) exclude important physics (e.g. 

precipitation)

Precipitation affects hydrogen diffusion in metals [W.R. Wampler, Nucl. 

Fusion (2009)]

We leverage metal tritides expertise at Sandia from 3He bubble growth 

models [D.F. Cowgill, Fusion Sci. & Technol. (2005)]

Altered to simulate hydrogen bubbles:

• Different nucleation process [Henricksson Appl. Phys. Lett. (2008).]

Use experiments to refine model.



5

 Motivation: Development a continuum scale 

model of hydrogen diffusion and 

precipitation in tungsten.

 Previous work:  Our approach leverages 

previous model of He bubble in metal tritides

[Cowgill, Fusion Sci & Technol., 2005].

Hydrogen precipitate growth in tungsten: experimental 

findings
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Bubble growth mechanisms:

• Crack propagation

• Dislocation loop punching

• Vacancy clustering

Focused ion beam (FIB) results:

• Profiled PLANSEE tungsten materials which had been

previously exposed in TPE: 70 eV D+ ions, Φ=1.1×1018

cm-2s-1, F=8.7×1021 cm-2, T=385 °C. [Details in J.P.

Sharpe et al., J. Nucl. Mater.(2009).]

• Large blister in Fig. 1(b) has enlarged by crack growth.

• Small blister in Fig. 1(c) has grown by dislocation loop

punching.

• For comparison, a FIB profile of re-crystallized

tungsten exposed under similar conditions is shown in

Fig. (d). Image from [Lindig et al., Phys. Scr. (2009).]

Growth mechanism also appear to be due to dislocation

loop punching.
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Diffusion and trapping were modeled using a continuum-

scale approach

Diffusion:

Basic 1-D diffusion equation assuming uniform

temperature.

Point defects:

Point defects modeled as 1.4 eV saturable traps (not

permitted to serve as nucleation sites for bubbles.)

Used approach of Ogorodnikova [J. Nucl. Mater.

2009] to address trapping and release:

δ = inverse trap saturability; Nt = trap density; Ct = H
concentration in traps.

Trapping by bubbles:

Modeled using a simple approach developed by Mills

[J. Appl. Phys. (1959)].
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Bubble growth by loop punching

Loop punching condition:

pLP≥ 2γ/rb+μb/rb

γ = surface energy rb = bubble radius

b = Burgers vector μ = shear stress

Plot above shows the pLP for W. For small
bubbles, pLP is >10 GPa. Need equation of
state to calculate H2 per bubble from loop
punching stress.
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Internal pressure within bubbles can exceed 1 GPa
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H2 solidifies
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H2 equation of state (EOS):

Very high pressures (>1 Gpa) expected

within small hydrogen bubbles.

At 25 °C, H2 solidifies at p=5.7 GPa,

forming an hexagonal close-packed

molecular solid.

• Over the range of pressures of

interest for this work, we found Tkacz’s

[J. Alloys & Compounds (2002)] EOS to

provide the best fit:

• San Marchi’s simplified EOS is also

quite accurate at lower pressures:
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Equilibrium conditions dictate the when bubbles will grow
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Calculation of equilibrium pressure:

When will the precipitate gas be in equilibrium with

the hydrogen in solution?

 Equate the chemical potentials of the gas phase

and solution.

 Account the non-ideal behavior of the gas in

bubbles by incorporating hydrogen fugacity:

 The equilibrium concentration is then given by the

following expression:

So and Hs are solubility parameters from Frauenfelder

[J. Vac. Sci. & Tech., 1969].

Equilibrium conditions predict when precipitation is
favorable.

 
p

dppRTTpvpf
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Continuum-scale approach enables rapid 

solution of diffusion equation

Assume:

(a)Point defects saturable, do not behave as bubble nucleation 

sites.

(b)Array of evenly-spaced sperhical bubbles.

(c)Bubble diameter smaller than inter-bubble spacings

(d)Slow thermal ramp (quasi-equilibrium is satisfied.)

Array of evenly-

spaced spherical 

bubbles.
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Basis for finite difference model:

need to integrate three coupled PDE’s

Governing equation (1-D diffusion w / 2 sink terms):

Flow into or out of the bubbles determined by local eq. conc.

Concentration at bubble surface determined by Sievert’s Law:

Fugacity (requires aforementioned EOS): 

𝜕𝑢(𝑥, 𝑡) 𝜕𝑡 = 𝐷 𝑡 𝜕2𝑢 𝑥, 𝑡 𝜕𝑥2 − 𝑞𝑇(𝑥, 𝑡) − 𝑞𝐵(𝑥, 𝑡) 

𝑞𝐵 = 𝜕𝑢𝐵(𝑥, 𝑡) 𝜕𝑡 = 4𝜋𝐷 𝑡 𝑟𝐵 𝑥, 𝑡 𝑁𝐵(𝑥) 𝑢 𝑥, 𝑡 − 𝑢𝑒𝑞 (𝑥, 𝑡)  

𝑢𝑒𝑞  𝑥, 𝑡 =  𝑓𝑆0exp(−𝐸𝑠/𝑅𝑇) 

ln 𝑓 𝑝  =   𝑣(𝑝, 𝑇) 𝑅𝑇 − 1 𝑝  𝑑𝑝
𝑝

0

 

𝑞𝑇 = 𝜕𝑢𝑇(𝑥, 𝑡) 𝜕𝑡  
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Simulated bubble sizes consistent 

with experimental findings
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Nt=4×10-5 W-1

Nb=10-12 W-1

F=1018 D/cm2-s, calculated near-

surface conc. at the end of range from

F=Du/r.

r=2.5 nm for 100 eV D+ ions

300 K 500 K

• Assumed a pre-existing concentration of 

nucleation sites (eventually growing into 

bubbles.)

• Traps fill first, followed by bubble growth.

• Using realistic input conditions, depth 

profiles consistent with experimental 

findings.



Part 2: tritium plasma 

experiment
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Tritium plasma experiment overview

Primary objective: Understanding 
tritium inventory issues in reactor 
first walls.

• Joint effort between Sandia Livermore 
and Idaho National Laboratory
(INL).

• Unique capability to subject materials 
to intense fluxes of T ions.

• Handling of neutron irradiated 
samples.

• Tritium permeation measurements.

• Tritium surface/depth profiling using 
imaging plate scanner.

• INL collaborators: M. Shimada, J. P. 
Sharpe

Experiment History:

• Originally developed at SNL as TPX 
(1982), later moved to LANL (1993) 
and INL (2002).

• System presently located at the Safety 
and Tritium Applied Research (STAR) 
facility.

• Restarted plasma operations in August 
2007.

Tritium retention and plasma driven permeation studies in fusion reactor materials.

15000 Ci limit

500 Ci typical source
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Operating with Tritium

Use of tritium (even in trace 
amount <1 %)

• Enhance the detection 
sensitivity significantly (by ion 
chamber or LSC)

• Trace the surface profile 
easily (by IP) 

Sensitivity: ~10-12= ppt (part 
per trillion)

Schematic courtesy of M. Shimada.

Initial testing with tritium 
completed March 2009.
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target 
location

source 
location

optical 
spectrometer

TPE plasma discharge characteristics

Diagnostics:

• Langmuir probe measurements at 

locations near both the source and 

target ends of the plasma chamber.

• Optical spectrometer available at 

target end (λ=585-685 nm.)

• Retention obtained by thermal 

desorption spectroscopy (TDS).
target

source

Discharge Properties:

• Electron temperature = 8 - 15 eV

• Electron density = 1016 – 1018 m-3

• Ion Flux = 1020 – 1022 m-2s-1

• Ion Fluence = 1023 – 1026 m-2

• Plasma column FWHM = 5 cm
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Planned TPE studies will focus on 

understanding microstructure effects

• Objective for upcoming work: perform experiments to

examine microstructure effects.

• Present work aimed at eliminating uncertainties in the

instrument:

– Eliminating C components in TPE

– Better thermal control of the target
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Development of plasma-driven 

permeation experiments underway

Low-flux ion beam studies:

• Anderl (1992) (initial measurements, measured 
recombination rate)

• Ueda (2011) compared different material structures

• Early high-flux attempts using TPE unsuccessful 
(~1995) due to temperature control difficulties

Progress to date:

• First generation design completed; demonstrated 
superior temperature control.

• Gas-cooled design fabricated ready for testing.

• Plasma-driven tritium permeation using “realistic” 

samples.

• Experiments part of the PSI-Science Center and 

collaboration with INL

• Leverages unique capabilities of the tritium plasma 

experiment (TPE)
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Concluding Remarks

 Successful development of a continuum-scale model of hydrogen 
precipitate growth in tungsten, useful for predicting conditions 
where bubble growth will occur.

 Present work focuses on converting this to a finite difference 
model of hydrogen precipitate growth.

 Development of plasma-driven permeation target holder for TPE is 
now underway; testing of first-generation device anticipated in 
August.
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