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Abstract—Hippocampus within medial temporal lobe of the
brain is essentially involved in episodic memory formation.
Rather than simply being a mechanism of storing information,
episodic memory associates information such as the spatial and
temporal context of an event. Using hippocampus
neurophysiology and functionality as an inspiration, we have
developed an artificial neural network architecture called
Associative-ART to associate k-tuples of inputs. In this paper
we present an overview of hippocampus neurophysiology,
explain the design of our neural network architecture, and
present experimental results from an implementation of our
architecture.

I. INTRODUCTION

EPISODIC memory enables us to neurally encode personal
experiences as represented from converged activations

across cortical areas for diverse sensory modalities. In
doing so, we are able to remember more than just a
particular event. Rather, we are capable of remembering the
detailed sequence of events comprising an experience as
well as the temporal and spatial context of each event in the
sequence [1]. One brain area, the hippocampus, is critically
involved in remembering the spatial and temporal context of
an event. Hippocampus location within human brain may be
seen in Fig. 1. The medial temporal lobe (MTL), where
hippocampus is located, is the recipient of inputs from
widespread areas of the cortex and supports the ability to
bind together cortical representations [1].
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A key component of episodic memory is association
formation [2]. This capability allows you to relate
knowledge pertaining to elements of an event such as who,
what, when, and where. In this paper we present an artificial
neural network architecture for association formation
inspired by hippocampal functionality. First we give a brief
overview of hippocampal neurophysiology, and then we
provide an explanation of how key hippocampal
functionality is incorporated into the presented architecture.
Next we provide experimental results from an
implementation of the architecture, and then close with
conclusions and future work.

Striatum

Septum

Thalamus

Fig. 1. Hippocampus location within human brain.

Il. HiPPOCAMPUS NEUROPHYSIOLOGY

Cortical inputs to MTL arrive from various sensory
modalities, with different emphases depending upon the
mammalian species. For instance, rats receive a significant
olfactory influence whereas bats receive a strong auditory
influence [3]. Nevertheless, across species, most of the
neocortical inputs to the perirhinal cortex come from cortical
areas which process unimodal sensory information about
qualities of objects (“what” information), and most of the
neocortical inputs to the parahippocampal cortex come from
cortical areas which process polymodal spatial (“where”)
information [3][1]. There are some connections between the
two streams, however overall processing of the streams
remains largely segregated until they converge within
hippocampus [5].



Extensive neuroscience research typically identifies
hippocampus to be composed of a loop receiving inputs
from entorhinal cortex (EC), which receives inputs from
perirhinal and parahippocampal cortices, and beginning with
dentate gyrus (DG), proceeding to CA3, followed by CAl
and propagating back to cortex. These sub regions will be
addressed individually as follows.

The DG receives the conjoined multimodal sensory
signals from EC. Anatomically, DG consists of a large
number of neurons with relatively sparse neural activation at
a given instant. Effectively, this behavior suggests that the
DG creates non-overlapping sparse codes for unique events
[6]. The sparse DG outputs serve as the input for CA3.

The CA3 region of hippocampus consists of extensive
recurrent connections.  Additionally, the presence of
numerous inhibitory and excitatory interneurons enables
CA3 to perform auto-association processes. Anatomically,
the output of CA3 proceeds to CAl and subiculum as the
major output regions of hippocampus [7].

While the exact functionality of subiculum is largely
unknown, CA1 functionality is typically identified as
learning relational information for temporal sequences and
connecting episodic encodings from CA3 with the original
EC sensory activations.

We have used some of these functional properties of
hippocampus as the basis for an artificial neural network
architecture for association formation which we will
describe next.

I1l. COMPUTATIONAL ARCHITECTURE

In general, an association is a relationship between entities
of a particular type. For example, an individual is associated
with their name or two individuals may be associated by a
common workplace. All entities are trivially related to
themselves, but more interesting associations are between
pairs and k- tuples of entities. A pair is the simplest non
trivial association, but more complexly, k individual entities
may be associated with each other as a k-tuple. And so the
question arises as to how relationships are formed.

Numerous domain specific rules or heuristics may be
derived based upon criteria such as distance metrics or
shared features. But instead, our architecture, which is
inspired by hippocampus, answers this question by the
premise of associating a focus with its context, analogous to
the dorsal and ventral partitioning in EC sensory input
signals. In other words, our approach associates what and
where information based upon their shared frame of
reference. For example, a man may be associated with the
home he is seen living at.

However, beyond simply deciding what entities should be
associated with one another there is also the issue of
representation.  Prior to entering hippocampus, sensory
signals pass through numerous layers of cortex. Throughout
these layers a representation for entities are built up.
Eventually, within hippocampus, the DG is believed to
create unique sparse encodings for unique perceptions.
Likewise, our architecture relies upon having a unique
representation of the inputs it receives such that it can
identify whether the current input is an item it has seen

before and update any existing associations appropriately, or
whether the input is novel necessitating a new encoding.

Our architecture, shown in Fig. 2, addresses this
capability by using fuzzy-Adaptive Resonance Theory
(ART) artificial neural network modules. Developed by
Carpenter and Grossberg, the ART family of neural
networks are online, unsupervised neural networks which
are excellent at category formation [8]. The fuzzy-ART
variant which we have employed in our architecture operates
upon real valued inputs. Given a vector of real valued
numbers corresponding to a particular input, fuzzy-ART
performs pattern categorization and through winner-take-all
competition yields a unique output value to represent a
group of similar inputs. A vigilance parameter allows us to
control how similar inputs are to be grouped within the same
category. A vigilance value of one specifies that the inputs
must be identical.  Lowering the vigilance parameter
towards zero allows for generalization such that similar, but
not exactly identical, inputs may be grouped together. If no
existing category is sufficiently close to represent a novel
input, then ART is capable of expanding and creating a new
category. We have utilized these capabilities by employing
a fuzzy-ART module to categorize the inputs presented to
our architecture. In the neurophysiology, DG creates nearly
unique encoding for novel inputs. Likewise, the fuzzy-ART
module we are using in our architecture creates
representative categories for inputs. Repeated presentation
of previously seen (identical) inputs activates the same
categorical representation whereas newly seen inputs can be
represented by their own encoding.  These unique
categorical activations may then be further processed and
associated together.
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Fig. 2. Associative-ART Architecture.

The DG encodings of hippocampus propagate to the CA3
region which is believed to be heavily composed of recurrent
connections and associations.  In our architecture, by
connecting an association field to the template activations of
the fuzzy-ART module we are able to encode associations
among k-tuples of inputs.  Existent neural network
architecture ARTMAP links two ART modules using a
mapfield such that the mapfield may record simultaneous
activations across the two ART modules. The rectangular
mapfield of ARTMAP connects one ART module to each
axis of the map grid and the intersecting grid lines encode a
connection between the two ART modules [9]. The
ARTMAP architecture allows many-to-one associations to



be formed from ART, to ART, where the a-side ART
module receives input from a data vector and the b-side
ART module receives input from a label vector in
(supervised learning) classification tasks (see Figure 1 in
[9D).

Our Associative-ART architecture consists of only a
single fuzzy-ART module and utilizes the association field
to encode associations between k-tuples of entities presented
to it rather than between two ART modules. Instead of
connecting a separate ART module to each axis of the
association field, the outputs of our single ART module are
mirrored connecting it to both sides of the association field
and subsequently allowing associations to be formed across
the single ART module. All association field values are
initialized to zero. Upon receiving a k-tuple input,
associations are formed by handling all pairs. For each of
the pairs, the grid intersection of the two entities in the
association field A is set to a value of one as shown in the
following equation:

A, =1V, j)eP, @

where P is the set of all pairs of elements in a k-tuple input.
Each element in the k-tuple input will correspond to a
particular fuzzy ART category activated during the previous
k time steps. Consequently, the association field of our
Associative-ART architecture creates a symmetric binary
association matrix.

The overall Associative-ART architecture is depicted in
Fig. 2. Using a single fuzzy-ART module necessitates that
rather than presenting associated inputs simultaneously, they
are presented sequentially to the fuzzy-ART module within
the architecture. Rather than encoding the instantaneous
activation of an individual input, the association field
associates the previous k fuzzy-ART outputs. In other
words, a single association field update encompasses k
fuzzy-ART categories. There is no sequencing in the
association field; instead there are multiple simultaneous
activations as may be seen in Fig. 2. In the Fig. 2 example,
the association formed links the dark gray and light gray
categories as a paired association in the association field.
Associations are symmetric and may be many-to-many.

IV. IMAGE ASSOCIATION EXPERIMENT

As a demonstration of the associative capability of our
Associative-ART architecture we have constructed a simple
image association experiment with 13 unique inputs and 14
associations amongst the inputs. The parametric
configuration we used for the fuzzy-ART module is B set to
1 (fast learning), a choice parameter o of 0.01, and a
vigilance of 0.99. As the base case, we have set k equal to
two so that the associations are pairs. While ART is capable
of processing any vectorized inputs, for this experiment we
have presented our architecture with images of uniquely
numbered circles as shown in Fig. 3. Each row in the figure
portrays an associative pairing and the column depicts the
individual input which was presented to the architecture.

V. IMAGE ASSOCIATION RESULTS

In the association field of our Associative-ART
architecture, the ordering of the pairs is arbitrary in regards
to the overall result. However, computationally by using a
fuzzy-ART neural network, the ordering influences the
representative template encoding of the input. For example,
Input B in the first row is the same image as Input A in the
second row. Due to the fact that both Input A and Input B
are processed by the same Fuzzy-ART module, the repeated
presentation of an input is represented by the same output
activation as opposed to a unique encoding whether the input
was presented as Input A or Input B.
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Fig. 3. Input image pairs for experiment testing association
capabilities of the architecture.

For this simple example, we were able to manually
construct the association field generated by the pairing of the
inputs for comparison purposes and verify the association
field generated by our Associative-ART architecture was
equivalent.  The association field generated by our
architecture is shown in Fig. 4, which is identical to the
manually  constructed association field. In this
representation, each row of the association matrix represents



an ART category corresponding to a unique input.
Likewise, the columns are a mirror of the rows. And so, a
value of one for a particular row-column intersection
denotes an association between the respective inputs
represented by those ART categories. Zeroes in the
association matrix depict no known association between two
entities, and have been omitted from Fig. 4 for clarity. For
undirected associations, as is the case in this example, the
resulting association matrix is symmetric about the main
diagonal.
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Fig. 4. Graph of resulting associations.

Additionally, as a more intuitive but equivalent depiction,
we have generated an association graph from the association
field which is shown in Fig. 5. As illustrated in this figure,
while simple pairs were presented to the architecture, the net
result is a more complex associative graph or network in
which larger transitive and group associations may be
inferred. For example, while input circles 10 and 4 were
never associated with one another, transitive association
paths exist by which the two inputs may be connected.

Fig. 5. Graph of resulting associations.

VI. TEXT ASSOCIATION EXPERIMENT

As a second exemplar illustrating the associative
capabilities of our architecture, we have created a text based
association example. Just as an individual’s physical self is
associated with their name, an individual’s first and last
name are associated with one another. And so, for this
example we have used the first and last names of United
States Presidents as our dataset [10]. First and last names
were presented to the architecture individually and
consecutively as text strings. John Quincy Adams and the
two President Bush’s were presented as triples rather than
pairs to differentiate these individuals. The full input data is
portrayed in Fig. 6. The ordering shown in the image is the
same as the order presented to our architecture, and although
the ordering does not affect the final associations formed we
have presented the paired names in order of presidency.

In order to process text strings using a Fuzzy-ART
module the text string must be mapped to a numeric vector.
In this case, we have done so by forming a vector consisting
of the American Standard Code for Information Interchange
(ASCII) decimal value for each individual letters in the
names [11]. Additionally, because Fuzzy-ART requires a
fixed length input vector, we have padded the shorter names
with zero values at the end of the vector to attain a constant
length for all text strings.  Alternative numeric text
encodings are possible but would not alter the resulting
association formations. The parametric configuration we
used for the fuzzy-ART module is B set to 1 (fast learning), a
choice parameter o of 0.01, and a vigilance of 1.

VII.

This example illustrates our architecture’s ability to
operate upon various input types, not just graphics as
demonstrated in the first example. The particular
characteristics of an association graph or network are
dependent upon the data presented to the architecture. This
second example is a larger input data set which exhibits
some characteristics not present in the first example. Due to
the increased complexity of this example, the full association
matrix generated by the architecture is too large to
meaningfully display within this paper. However, Fig. 7
depicts a few of the interesting associations extracted from
the overall resultant association matrix.

In this example, the overall association graph is not
connected, but rather disjoint groupings form, some of
which are shown in Fig. 7. For example, as may be seen on
the right side of Fig. 7, James has been a popular first name
among several presidents and thus six different presidents
are all associated with this first name. Other associations are
unique in the sense that they do not share a first or last name
with any other president and consequently only the two
names are associated with each other and nothing else. Two
such examples shown in Fig. 7 are Abraham Lincoln and
Ronal Reagan near the top right corner of the figure.

John Adams was the second President and John Quincy
Adams was the sixth President. As previously stated, the
name John Quincy Adams was presented as a triple to
differentiate these two men.

TEXT ASSOCIATION RESULTS
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The graph of the resulting association group is illustrated in

George Washington Benjamin Harrison . -
J the upper left portion of Fig. 7.

John Adams Grover Cleveland
Thomas Jefferson William McKinley

VIIl. CONCLUSIONS AND FUTURE WORK
lames Madison Theedore Roosevelt . .

In this paper we have presented an artificial neural

lames Monroe William Taft

network computational architecture with functionality
JohnQuincy  Adams Woodrow Wilson inspired by the neural functionality of hippocampus.
Specifically, this architecture was designed based upon the
DG and CA3 regions of hippocampus to learn associations
Martin VanBuren Calvin Coolidge amongst k-tuples of entities. Our approach is general, as
opposed to a domain specific solution, in the sense that it

Andrew Jackson Warren Harding

William Harrison Herbert Hoover . .
can handle any sort of input as long as the input may be
John Tyler Franklin Roosevelt represented as a numeric vector.
lames polk Harry T In this paper we have demonstrated the architecture on a
. _ couple of simple problems which begin to show the
— o — e architecture’s  potential for representing non-explicit

Millard Fillmore John Kennedy association networks. Constructing association networks
such as these allows further analysis such as transitivity,

Frankiin Plerce Lyndon Johnson centrality, clustering, connectivity, and other network

James Buchanan Richard Nixon metrics.  Additionally, in regards to data mining, our

AEREm Lincoln Gerald ford approach provides a means of representation and structured
presentation.

Andrew Jehnson James Carter Future development of this architecture may include

Ulysses Grant Ronald Reagan additional processing within the association field. Rather
than simply recording a binary association value, additional

Rutherford Hayes GeorgeH.W.  Bush

metrics such as a frequency count or a recency value may
lames Garfield William Clinton provide interesting enhancements. Incorporating a
frequency count is one possibility to identify strength of
association such that pairings repeatedly presented together
Grover Cleveland Barack Obama are more strongly associated than items only presented once.
In our preliminary architecture, presentation order is
irrelevant, but if instead order matters a temporal marker
could be utilized to assess how recently an association was

formed. From this approach, various further processing
could be incorporated such as the decay of associations over
time. Depending upon the particular application,
architecture modifications such as these provide great
potential for enhanced further processing as well as
addressing episodic or sequential data.

Chester Arthur GeorgeW. Bush

Fig. 6. Input text pairs of U.S. President Names.
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Fig. 7. Partial graph of text associations of U.S. President Names.
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