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Abstract—Hippocampus within medial temporal lobe of the 

brain is essentially involved in episodic memory formation.  

Rather than simply being a mechanism of storing information, 

episodic memory associates information such as the spatial and 

temporal context of an event.  Using hippocampus 

neurophysiology and functionality as an inspiration, we have 

developed an artificial neural network architecture called 

Associative-ART to associate k-tuples of inputs.  In this paper 

we present an overview of hippocampus neurophysiology, 

explain the design of our neural network architecture, and 

present experimental results from an implementation of our 

architecture. 

I. INTRODUCTION 

PISODIC memory enables us to neurally encode personal 

experiences as represented from converged activations 

across cortical areas for diverse sensory modalities.  In 

doing so, we are able to remember more than just a 

particular event.  Rather, we are capable of remembering the 

detailed sequence of events comprising an experience as 

well as the temporal and spatial context of each event in the 

sequence [1].  One brain area, the hippocampus, is critically 

involved in remembering the spatial and temporal context of 

an event.  Hippocampus location within human brain may be 

seen in Fig. 1.  The medial temporal lobe (MTL), where 

hippocampus is located, is the recipient of inputs from 

widespread areas of the cortex and supports the ability to 

bind together cortical representations [1]. 
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 A key component of episodic memory is association 

formation [2].  This capability allows you to relate 

knowledge pertaining to elements of an event such as who, 

what, when, and where.  In this paper we present an artificial 

neural network architecture for association formation 

inspired by hippocampal functionality.  First we give a brief 

overview of hippocampal neurophysiology, and then we 

provide an explanation of how key hippocampal 

functionality is incorporated into the presented architecture.  

Next we provide experimental results from an 

implementation of the architecture, and then close with 

conclusions and future work.   

II. HIPPOCAMPUS NEUROPHYSIOLOGY 

Cortical inputs to MTL arrive from various sensory 

modalities, with different emphases depending upon the 

mammalian species.  For instance, rats receive a significant 

olfactory influence whereas bats receive a strong auditory 

influence [3].  Nevertheless, across species, most of the 

neocortical inputs to the perirhinal cortex come from cortical 

areas which process unimodal sensory information about 

qualities of objects (“what” information), and most of the 

neocortical inputs to the parahippocampal cortex come from 

cortical areas which process polymodal spatial (“where”) 

information [3][1].  There are some connections between the 

two streams, however overall processing of the streams 

remains largely segregated until they converge within 

hippocampus [5].   

A Neurophysiologically Inspired Hippocampus Based Associative-

ART Artificial Neural Network Architecture 

Craig M. Vineyard, Stephen J. Verzi, Michael L. Bernard, Shawn E. Taylor, Wendy L. Shaneyfelt, 

Irene Dubicka, Jonathan T. McClain and Thomas P. Caudell 

E 

 
Fig. 1.  Hippocampus location within human brain. 
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Extensive neuroscience research typically identifies 

hippocampus to be composed of a loop receiving inputs 

from entorhinal cortex (EC), which receives inputs from 

perirhinal and parahippocampal cortices, and beginning with 

dentate gyrus (DG), proceeding to CA3, followed by CA1 

and propagating back to cortex.  These sub regions will be 

addressed individually as follows. 

The DG receives the conjoined multimodal sensory 

signals from EC.  Anatomically, DG consists of a large 

number of neurons with relatively sparse neural activation at 

a given instant.  Effectively, this behavior suggests that the 

DG creates non-overlapping sparse codes for unique events 

[6].  The sparse DG outputs serve as the input for CA3. 

The CA3 region of hippocampus consists of extensive 

recurrent connections.  Additionally, the presence of 

numerous inhibitory and excitatory interneurons enables 

CA3 to perform auto-association processes.    Anatomically, 

the output of CA3 proceeds to CA1 and subiculum as the 

major output regions of hippocampus [7]. 

While the exact functionality of subiculum is largely 

unknown, CA1 functionality is typically identified as 

learning relational information for temporal sequences and 

connecting episodic encodings from CA3 with the original 

EC sensory activations.  

We have used some of these functional properties of 

hippocampus as the basis for an artificial neural network 

architecture for association formation which we will 

describe next.   

III. COMPUTATIONAL ARCHITECTURE 

In general, an association is a relationship between entities 

of a particular type.  For example, an individual is associated 

with their name or two individuals may be associated by a 

common workplace.  All entities are trivially related to 

themselves, but more interesting associations are between 

pairs and k- tuples of entities.  A pair is the simplest non 

trivial association, but more complexly, k individual entities 

may be associated with each other as a k-tuple.  And so the 

question arises as to how relationships are formed.   

Numerous domain specific rules or heuristics may be 

derived based upon criteria such as distance metrics or 

shared features.  But instead, our architecture, which is 

inspired by hippocampus, answers this question by the 

premise of associating a focus with its context, analogous to 

the dorsal and ventral partitioning in EC sensory input 

signals.  In other words, our approach associates what and 

where information based upon their shared frame of 

reference.  For example, a man may be associated with the 

home he is seen living at.     

However, beyond simply deciding what entities should be 

associated with one another there is also the issue of 

representation.  Prior to entering hippocampus, sensory 

signals pass through numerous layers of cortex.  Throughout 

these layers a representation for entities are built up.  

Eventually, within hippocampus, the DG is believed to 

create unique sparse encodings for unique perceptions.  

Likewise, our architecture relies upon having a unique 

representation of the inputs it receives such that it can 

identify whether the current input is an item it has seen 

before and update any existing associations appropriately, or 

whether the input is novel necessitating a new encoding.  

 Our architecture, shown in Fig. 2, addresses this 

capability by using fuzzy-Adaptive Resonance Theory 

(ART) artificial neural network modules.  Developed by 

Carpenter and Grossberg, the ART family of neural 

networks are online, unsupervised neural networks which 

are excellent at category formation [8].  The fuzzy-ART 

variant which we have employed in our architecture operates 

upon real valued inputs.  Given a vector of real valued 

numbers corresponding to a particular input, fuzzy-ART 

performs pattern categorization and through winner-take-all 

competition yields a unique output value to represent a 

group of similar inputs.  A vigilance parameter allows us to 

control how similar inputs are to be grouped within the same 

category.  A vigilance value of one specifies that the inputs 

must be identical.  Lowering the vigilance parameter 

towards zero allows for generalization such that similar, but 

not exactly identical, inputs may be grouped together.  If no 

existing category is sufficiently close to represent a novel 

input, then ART is capable of expanding and creating a new 

category.  We have utilized these capabilities by employing 

a fuzzy-ART module to categorize the inputs presented to 

our architecture.  In the neurophysiology, DG creates nearly 

unique encoding for novel inputs.  Likewise, the fuzzy-ART 

module we are using in our architecture creates 

representative categories for inputs.  Repeated presentation 

of previously seen (identical) inputs activates the same 

categorical representation whereas newly seen inputs can be 

represented by their own encoding.  These unique 

categorical activations may then be further processed and 

associated together.   

The DG encodings of hippocampus propagate to the CA3 

region which is believed to be heavily composed of recurrent 

connections and associations.  In our architecture, by 

connecting an association field to the template activations of 

the fuzzy-ART module we are able to encode associations 

among k-tuples of inputs.  Existent neural network 

architecture ARTMAP links two ART modules using a 

mapfield such that the mapfield may record simultaneous 

activations across the two ART modules.  The rectangular 

mapfield of ARTMAP connects one ART module to each 

axis of the map grid and the intersecting grid lines encode a 

connection between the two ART modules [9].  The 

ARTMAP architecture allows many-to-one associations to 

 
Fig. 2.  Associative-ART Architecture. 



 

 

 

be formed from ARTa to ARTb where the a-side ART 

module receives input from a data vector and the b-side 

ART module receives input from a label vector in 

(supervised learning) classification tasks (see Figure 1 in 

[9]).        

Our Associative-ART architecture consists of only a 

single fuzzy-ART module and utilizes the association field 

to encode associations between k-tuples of entities presented 

to it rather than between two ART modules.  Instead of 

connecting a separate ART module to each axis of the 

association field, the outputs of our single ART module are 

mirrored connecting it to both sides of the association field 

and subsequently allowing associations to be formed across 

the single ART module.  All association field values are 

initialized to zero.  Upon receiving a k-tuple input, 

associations are formed by handling all pairs.  For each of 

the pairs, the grid intersection of the two entities in the 

association field A is set to a value of one as shown in the 

following equation:  

,),(,1 PjiAij 

 

(1) 

where P is the set of all pairs of elements in a k-tuple input.  

Each element in the k-tuple input will correspond to a 

particular fuzzy ART category activated during the previous 

k time steps.  Consequently, the association field of our 

Associative-ART architecture creates a symmetric binary 

association matrix. 

The overall Associative-ART architecture is depicted in 

Fig. 2.  Using a single fuzzy-ART module necessitates that 

rather than presenting associated inputs simultaneously, they 

are presented sequentially to the fuzzy-ART module within 

the architecture.  Rather than encoding the instantaneous 

activation of an individual input, the association field 

associates the previous k fuzzy-ART outputs.  In other 

words, a single association field update encompasses k 

fuzzy-ART categories.  There is no sequencing in the 

association field; instead there are multiple simultaneous 

activations as may be seen in Fig. 2.  In the Fig. 2 example, 

the association formed links the dark gray and light gray 

categories as a paired association in the association field.  

Associations are symmetric and may be many-to-many.        

IV. IMAGE ASSOCIATION EXPERIMENT 

As a demonstration of the associative capability of our 

Associative-ART architecture we have constructed a simple 

image association experiment with 13 unique inputs and 14 

associations amongst the inputs. The parametric 

configuration we used for the fuzzy-ART module is β set to 

1 (fast learning), a choice parameter α of 0.01, and a 

vigilance of 0.99.  As the base case, we have set k equal to 

two so that the associations are pairs.  While ART is capable 

of processing any vectorized inputs, for this experiment we 

have presented our architecture with images of uniquely 

numbered circles as shown in Fig. 3.  Each row in the figure 

portrays an associative pairing and the column depicts the 

individual input which was presented to the architecture.       

V. IMAGE ASSOCIATION RESULTS 

In the association field of our Associative-ART 

architecture, the ordering of the pairs is arbitrary in regards 

to the overall result.  However, computationally by using a 

fuzzy-ART neural network, the ordering influences the 

representative template encoding of the input.  For example, 

Input B in the first row is the same image as Input A in the 

second row.  Due to the fact that both Input A and Input B 

are processed by the same Fuzzy-ART module, the repeated 

presentation of an input is represented by the same output 

activation as opposed to a unique encoding whether the input 

was presented as Input A or Input B.     

For this simple example, we were able to manually 

construct the association field generated by the pairing of the 

inputs for comparison purposes and verify the association 

field generated by our Associative-ART architecture was 

equivalent.  The association field generated by our 

architecture is shown in Fig. 4, which is identical to the 

manually constructed association field.  In this 

representation, each row of the association matrix represents 

 
Fig. 3.  Input image pairs for experiment testing association 

capabilities of the architecture. 



 

 

 

an ART category corresponding to a unique input.  

Likewise, the columns are a mirror of the rows.  And so, a 

value of one for a particular row-column intersection 

denotes an association between the respective inputs 

represented by those ART categories.  Zeroes in the 

association matrix depict no known association between two 

entities, and have been omitted from Fig. 4 for clarity.  For 

undirected associations, as is the case in this example, the 

resulting association matrix is symmetric about the main 

diagonal.      

Additionally, as a more intuitive but equivalent depiction, 

we have generated an association graph from the association 

field which is shown in Fig. 5.  As illustrated in this figure, 

while simple pairs were presented to the architecture, the net 

result is a more complex associative graph or network in 

which larger transitive and group associations may be 

inferred.  For example, while input circles 10 and 4 were 

never associated with one another, transitive association 

paths exist by which the two inputs may be connected.    

VI. TEXT ASSOCIATION EXPERIMENT 

As a second exemplar illustrating the associative 

capabilities of our architecture, we have created a text based 

association example.  Just as an individual’s physical self is 

associated with their name, an individual’s first and last 

name are associated with one another.  And so, for this 

example we have used the first and last names of United 

States Presidents as our dataset [10].  First and last names 

were presented to the architecture individually and 

consecutively as text strings.  John Quincy Adams and the 

two President Bush’s were presented as triples rather than 

pairs to differentiate these individuals.  The full input data is 

portrayed in Fig. 6.  The ordering shown in the image is the 

same as the order presented to our architecture, and although 

the ordering does not affect the final associations formed we 

have presented the paired names in order of presidency.   

In order to process text strings using a Fuzzy-ART 

module the text string must be mapped to a numeric vector.  

In this case, we have done so by forming a vector consisting 

of the American Standard Code for Information Interchange 

(ASCII) decimal value for each individual letters in the 

names [11].  Additionally, because Fuzzy-ART requires a 

fixed length input vector, we have padded the shorter names 

with zero values at the end of the vector to attain a constant 

length for all text strings.  Alternative numeric text 

encodings are possible but would not alter the resulting 

association formations.  The parametric configuration we 

used for the fuzzy-ART module is β set to 1 (fast learning), a 

choice parameter α of 0.01, and a vigilance of 1.         

VII. TEXT ASSOCIATION RESULTS 

This example illustrates our architecture’s ability to 

operate upon various input types, not just graphics as 

demonstrated in the first example.  The particular 

characteristics of an association graph or network are 

dependent upon the data presented to the architecture.  This 

second example is a larger input data set which exhibits 

some characteristics not present in the first example.  Due to 

the increased complexity of this example, the full association 

matrix generated by the architecture is too large to 

meaningfully display within this paper.  However, Fig. 7 

depicts a few of the interesting associations extracted from 

the overall resultant association matrix.   

In this example, the overall association graph is not 

connected, but rather disjoint groupings form, some of 

which are shown in Fig. 7.  For example, as may be seen on 

the right side of Fig. 7, James has been a popular first name 

among several presidents and thus six different presidents 

are all associated with this first name.  Other associations are 

unique in the sense that they do not share a first or last name 

with any other president and consequently only the two 

names are associated with each other and nothing else.  Two 

such examples shown in Fig. 7 are Abraham Lincoln and 

Ronal Reagan near the top right corner of the figure.   

John Adams was the second President and John Quincy 

Adams was the sixth President.  As previously stated, the 

name John Quincy Adams was presented as a triple to 

differentiate these two men.   
 

Fig. 5.  Graph of resulting associations. 

 
Fig. 4.  Graph of resulting associations. 



 

 

 

 

 

 

The graph of the resulting association group is illustrated in 

the upper left portion of Fig. 7.   

 

VIII. CONCLUSIONS AND FUTURE WORK 

In this paper we have presented an artificial neural 

network computational architecture with functionality 

inspired by the neural functionality of hippocampus.  

Specifically, this architecture was designed based upon the 

DG and CA3 regions of hippocampus to learn associations 

amongst k-tuples of entities.  Our approach is general, as 

opposed to a domain specific solution, in the sense that it 

can handle any sort of input as long as the input may be 

represented as a numeric vector.   

In this paper we have demonstrated the architecture on a 

couple of simple problems which begin to show the 

architecture’s potential for representing non-explicit 

association networks.  Constructing association networks 

such as these allows further analysis such as transitivity, 

centrality, clustering, connectivity, and other network 

metrics.  Additionally, in regards to data mining, our 

approach provides a means of representation and structured 

presentation.       

Future development of this architecture may include 

additional processing within the association field.  Rather 

than simply recording a binary association value, additional 

metrics such as a frequency count or a recency value may 

provide interesting enhancements.  Incorporating a 

frequency count is one possibility to identify strength of 

association such that pairings repeatedly presented together 

are more strongly associated than items only presented once.  

In our preliminary architecture, presentation order is 

irrelevant, but if instead order matters a temporal marker 

could be utilized to assess how recently an association was 

formed.  From this approach, various further processing 

could be incorporated such as the decay of associations over 

time.    Depending upon the particular application, 

architecture modifications such as these provide great 

potential for enhanced further processing as well as 

addressing episodic or sequential data.   
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Fig. 6.  Input text pairs of U.S. President Names. 

 
Fig. 7.  Partial graph of text associations of U.S. President Names. 
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