

Role of Accelerated Testing in Attaining High Reliability in Small Production Quantity Product

Douglas H. Loescher
Sandia National Laboratories

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

Approved for Unlimited Release

Outline

- ◆ Operational definition of reliability
- ◆ Observations about small builds
- ◆ High reliability means delivered product **does not fail**
- ◆ Failure mechanisms, modes, and pathways
- ◆ Roles for accelerated stress tests
- ◆ Examples
- ◆ Summary

Reliable

- ◆ Product is reliable if it **does not fail** to do whatever it is supposed to do when it is supposed to do so
 - *Product* includes:
 - Hardware,
 - Processes,
 - Tests
 - Events
- ◆ Accelerated stress testing is an important tool for identification and possible quantification of failure mechanisms.

Supposed To Do

- ◆ It is the author's experience that *supposed to do* is often not clearly understood by the customer or the supplier

➤ Examples:

- Does a rise time requirement apply to all voltages from a multiple tap battery or only to some?
 - A typical requirement has been to have all voltages at some percentage of nominal in some number of milliseconds
 - Often, only a subset need meet the requirement
- Does stoppage of count down and re-schedule of a field test, without damage to expensive and scarce assets, constitute failure of the test?

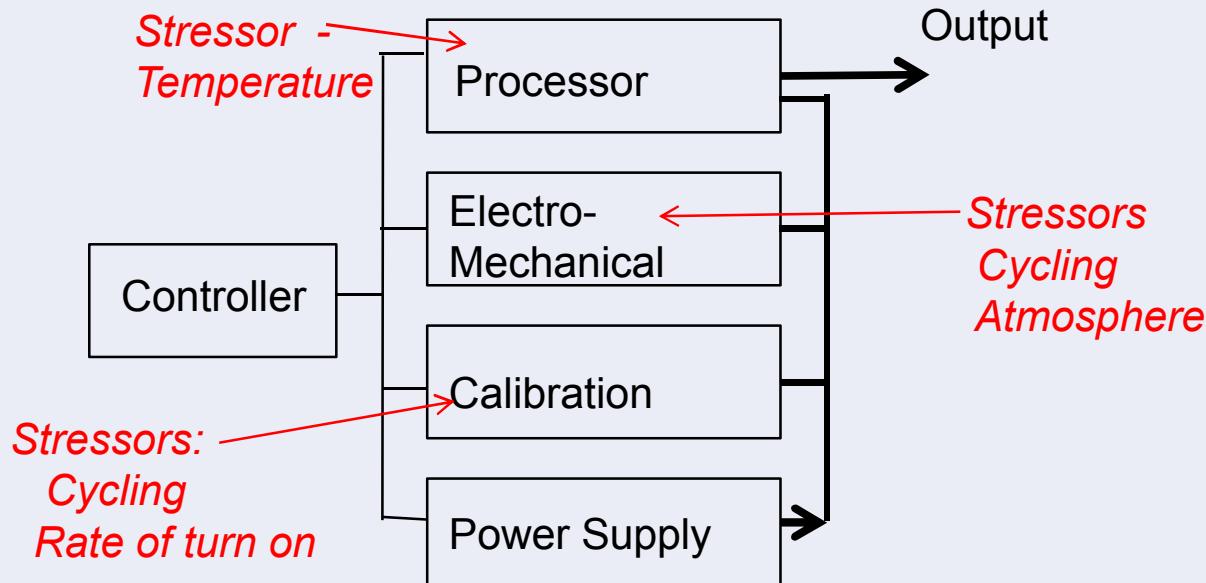
Small Quantity

- ◆ Much of the author's experience has been with total build quantities of between one and ten.
 - One item for a space platform,
 - Six batteries for weapon tests,
 - Five or fewer special electronic assemblies
 - One field test
- ◆ However, *small* applied to a build of 1000 one-shot electro-explosive devices for which the reliability requirement was 0.9999 (four nines).

Observations About Small Builds

- ◆ Limited budget
- ◆ Often severe limitations on hardware for test
- ◆ Evolution from development project to small build
 - Project starts out as demonstration of a concept
 - No reliability requirements
 - Successes snowball into more funding and more capability.
 - A customer with urgent needs and funding is found
 - Along with needs and funding come reliability requirements
 - People who did early builds no longer on project

Focus on Preventing Failure


- ◆ Preventing failure in fielded product includes:
 - Identifying possible causes of failure
 - At design stage
 - During processing
 - During acceptance
 - Understanding causes of failure
 - Need to be as specific as possible
 - Eliminating causes of failure
 - Through redesign, changes in processing, changes in acceptance
- ◆ Goal –Delivered product does not fail

Roles of Accelerated Stress Testing

- ◆ Explore failure space with limited hardware and in limited amount of time
- ◆ Clarify association between stresses and failure
 - What stresses at what levels cause what failures
 - Identify synergisms between stresses
- ◆ Quantify relation between stress and probability of failure
 - Provide evidence that probability of failure due to particular stress is acceptably low

Example 1 - Terrestrial System

- ◆ Remote location terrestrial system

Calibration Module

- ◆ Incandescent bulbs used to calibrate sensors
 - Calibration about every two hours (120 minutes)
- ◆ Failure mechanism is very rapid heating of filament that occurs when current is applied from source with low internal impedance
 - Failure at turn on much more likely than failure while on
- ◆ Design incorporates controlled current ramp
- ◆ Accelerated stress
 - Cycled every three minutes, factor of 40 acceleration

Electro-mechanical Module

- ◆ Garage door like mechanism in corrosive atmosphere
- ◆ Accelerated corrosion and wear
 - Subject matter expert designed atmosphere in which corrosion would be accelerated.
- ◆ Modified cycle to reduce low-wear stationary time
 - Retained high wear part of up-down cycle
- ◆ Estimate obtained 30 % of corrosion and wear in 10 days.

Processor Module

- ◆ Signal processor electronics would operate continuously
 - No possibility of accelerating aging through reduction of duration of low stress periods
- ◆ Seven circuit cards were available for test
 - Tested at 65 °C for 219 hours, extended to 1184 hours
 - Determined from Arrhenius relation to be equivalent to one year at 20 °C (activation energy of 0.7 eV)
 - No failures were observed
 - Estimated reliability of 0.94 for one year at 90 % confidence
 - Reliability of 0.9 at 50 % confidence from 219 hour results

Example 1- Conclusions

- ◆ Life of calibration lamps would exceed required life
- ◆ Life of garage door mechanism would exceed required life
- ◆ Processor electronics would require periodic replacement
 - Replacement period consistent with logistics plan

Example 2 – Space system

- ◆ Two issues
 - Cleaning and bagging
 - Infra-red sensor degradation

Cleaning and Bagging

- ◆ Various mechanical parts and assemblies were cleaned in a Class 100 clean room and vacuum bagged for shipment to next assembly contractor.
 - Next assembly site on east coast and controlled by another contractor
- ◆ Contractor claimed sub 10 micron particulate contamination on shipped parts exceeded specification
- ◆ Multi-month cycle time for cleaning, bagging, and packing at Sandia; shipping; then receipt, incoming inspection, preparation and transmittal of report by contractor.

Cleaning and Bagging

continued-ii

◆ Possible sources of contamination

- Processing at Sandia
- Incoming inspection at contractor

◆ Social issue

- Most comfortable to blame the other guy
- Easiest to identify and fix locally

◆ Accelerate cycle

- Clean, bag, walk around with bag in lab coat pocket, open bag and inspect for particles
- Test on coupons rather than on hardware for delivery

Cleaning and Bagging

continued-iii

- ◆ Acceleration factor of about 360
 - Normal clean-bag-ship-inspect cycle took at least a couple of months
 - Accelerated cycle took about 4 hours.
- ◆ Quickly found that parts were contaminated as soon as they were put into a bag
- ◆ Confirmation of failure mode
 - No contamination observed on parts that were put into covered Petri dish before bagging.
 - Apparently small particles flake off of inside of bag

Infra-red Sensor

- ◆ High pixel count infra-red sensor array
 - Design includes barrier to separate gold and indium
- ◆ When in space, array will be cooled to 105 K
 - Room temperature storage between delivery to Sandia in 2009 and eventual use in space
 - Concern about diffusion and gold-indium intermetallic formation prior to launch

◆ Investigation of intermetallic formation

- Located process evaluation coupons (PEC's)
- Compared post storage electrical measurements with post fabrication measurements
 - Observed increased leakage current
- Electron microscopy showed inadequate barrier coverage

◆ Accelerated stress testing on PEC's

- Estimated that 100 hours at 50 C would be equivalent to 25 days at room temperature
- Samples aged at 50 C showed expected degradation

Satellite Application-Conclusions

- ◆ Bagging source of very small particles
- ◆ Two solutions
 - Re-clean after bagging
 - Isolate part from bag
 - Petri dish
 - Complex, expensive metal “casket”
- ◆ Inter-metallic formation
 - Availability of PEC's was critical to investigation
 - Ongoing studies to determine impact on required performance

A Field Test as a Small Build

- ◆ More common to think about reliability of what is being tested than about reliability of the test event
- ◆ Value in thinking of test event as production of a single item
 - What are reliability concerns?
 - What are failure modes?
 - Prepare fault trees for identified high level test failure events
 - A high level failure could be: All control room indications as expected but rocket engine fails to ignite
 - Apply accelerated stress testing to expose and provide information about failure modes

Two Illustrations From Field Test

- ◆ Concern about integrity of RS485 communication due to cable length
- ◆ Concern about over heating of fire signal module due to high ambient temperature and sun light.

Signal Degradation

- ◆ Concern that signal cable length was near or slightly in excess of recommended maximum of 1200 meters (4000 feet) for reliable use of RS485 protocol
 - Actual length was slightly over 4000 feet
- ◆ Reliability concern but no clear statement of what reliability was required
 - Remember earlier *Supposed to do* slide

Signal Degradation

continued-ii

◆ Accelerate stress

- Identify stress- length of cable
- Investigate relation between stressor and failure
 - Could test at various lengths and develop relation between length and reliability of communication

◆ Reliability perspective

- Eliminate failure mode if possible
- The customer chose to add a repeater to the signal path

Over Heating of Electronics

- ◆ Concern that electronics that produced electrical pulse to fire squib could over heat if test were delayed
 - Could be intense solar heating in afternoon in New Mexico
- ◆ Accelerated test
 - Measure temperatures that occur
 - Test modules in oven

Field Test-Conclusions

- ◆ Field test group decided to add RS485 repeater at intermediate point in cable path
 - Cheaper and more certain solution than accelerated test to determine effect of cable length
- ◆ Module over heating
 - Expect measurement of temperatures
 - Expect accelerated test

Caveats and Pitfalls

- ◆ Tests on isolated parts of product may miss interaction and interconnect failures
- ◆ Misleading results if misidentify the failure mode or the stressor
 - Accelerated cycling of *garage door like* assembly could have been misleading if principle failure mode was door getting stuck in place due to corrosion
- ◆ It may be more expensive to evaluate a failure mode than to eliminate it
 - Cheaper and more certain to add repeater than to explore effect of cable length on communication reliability

Summary

- ◆ High reliability will be attained if product **does not fail**
- ◆ Accelerated stress testing is an efficient and cost effective tool for achievement of high reliability in small build product
- ◆ Use accelerated stress test for all of the following was shown:
 - Identify failure modes
 - With as much clarity and specificity as possible
 - Example –failure of calibration lamps

Summary continued - ii

- Determine associations between failure modes and stressors
 - Example – Bagging study
- Determine bounds on probabilities of failure
 - Example - Circuit card tests at elevated temperature
- Show that probability of failure is low enough
 - Example - Cycling of incandescent bulbs
- Explore relationship between probability of failure and stressor levels
 - Example – Proposed study of relationship between cable length and communication channel reliability

Summary-iii

◆ All together on one slide

- Product is reliable if it does not fail
- To achieve reliability, eliminate failure
- Accelerated stress testing is a power full, cost effective tool with which to identify and gain knowledge about failure
- Treasure testable items, for example process evaluation coupons
- Be imaginative
 - Think of a field test as delivery of one very reliable unit