SAND2011- 7546C

Infinite Horizon Adversarial Patrolling on Networks

*
Yevgeniy Vorobeychik
Sandia National Laboratories
Livermore, CA
yvorobe@sandia.gov

ABSTRACT

Defender-Attacker Stackelberg games are the foundations of tools
deployed for computing optimal patrolling strategies in adversarial
domains such as the Federal Air Marshals Service and the United
States Coast Guard, among others. In Stackelberg game models the
attacker knows only the probability that each target is covered by
the defender, but is oblivious to the detailed timing of the cover-
age schedule. In many real-world situations, however, the attacker
can observe the current location of the defender and can exploit
this knowledge to reason about the defender’s future moves. We
study Stackelberg security games in which the defender sequen-
tially moves between targets, with moves constrained by an ex-
ogenously specified graph, while the attacker can observe the de-
fender’s current location and his (stochastic) policy concerning fu-
ture moves. We offer five contributions: (1) We model this adver-
sarial patrolling game as a stochastic game with special structure
and present several alternative formulations that leverage the gen-
eral non-linear programming (NLP) approach for computing equi-
libria in zero-sum stochastic games. We show that our formulations
yield significantly better solutions than previous approaches. (2)
We provide an approximate MILP formulation that uses discrete
defender move probabilities. (3) We experimentally demonstrate
the efficacy of an NLP-based approach, and systematically study
the impact of network topology on the results. (4) We extend our
model to allow the defender to construct the graph constraining his
moves, at some cost, and offer novel algorithms for this setting,
finding that a MILP approximation is much more effective than the
exact NLP in this setting. (5) We present an alternative model in
which we replace graph constraints on defender moves with tran-
sition costs, and provide NLP and MILP formulations for several
variants of this problem.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence]: Distributed artificial intelligence—
Intelligent agents

*Sandia National Labs, Livermore, CA. Sandia National Laborato-
ries is a multi-program laboratory managed and operated by Sandia
Corporation, a wholly owned subsidiary of Lockheed Martin Cor-
poration, for the U.S. Department of Energy’s National Nuclear
Security Administration under contract DE-AC04-94AL85000

Appears in: Proceedings of the 11th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2012),
Conitzer, Winikoff, Padgham, and van der Hoek (eds.), June, 4-8, 2012,
Valencia, Spain.

Copyright (©) 2012, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Bo An and Milind Tambe
University of Southern California
Los Angeles, CA

{boa,tambe}@usc.edu

General Terms

Algorithms, Performance, Economics, Security

Keywords
Game theory, Security, Stackelberg Games, Patrolling, MDP

1. INTRODUCTION

Game theoretic approaches to security based on Stackelberg game
models have received much attention in recent years, with several
finding deployment in real-world settings including LAX (Los An-
geles International Airport), FAMS (United States Federal Air Mar-
shals Service), TSA (United States Transportation Security Agency),
and USCG (United States Coast Guard) [10, 3]. At the backbone
of these applications are defender-attacker Stackelberg games in
which the defender first commits to a randomized security policy,
and the attacker uses surveillance to learn about the policy before
attacking. The analysis of Stackelberg security games has focused
primarily on computing Strong Stackelberg equilibrium (SSE), i.e.,
the optimal strategy for the defender [13, 8, 11].

To date, the Stackelberg game models for all real-world secu-
rity applications assume that attacker knows the probability that
each target is covered by the defender, but is oblivious to the ac-
tual sequence of defender moves. For example, the defender may
in fact visit targets according to some fixed (but randomly gener-
ated) patrolling schedule, but the attacker is presumed to be unable
to observe the defender’s location at any point during the patrol. In
many realistic settings, such as USCG [3], it is likely that the at-
tacker can in fact observe the patrol while it is in progress (e.g., the
coast guard ships can be quite overt). Thus, a more plausible model
in such a setting would allow the attacker to observe both the ran-
domized policy of the defender (i.e., probability distribution over
moves) as well as current defender location. We formally model
this setting as an adversarial patrolling game, or APG, and present
methods for computing an optimal stochastic patrolling policy for
the defender when the planning horizon is infinite and the attacker
is impatient (i.e., exponentially discounts future payoffs). Through
most of the paper, we additionally assume that the game is strictly
competitive: that is, the goal of the defender is to minimize the
attacker’s expected (discounted) utility (Section 7 is an exception).

This paper provides five contributions in the adversarial patrolling
setting: (1) We present a formal adversarial patrolling game (APG)
model, show that it can be easily cast as a stochastic game (Sec-
tion 3), and offer several alternative formulations that leverage the
general non-linear programming approach for computing equilib-
ria in zero-sum stochastic games [9] (Section 4). (2) We provide an
approximate MILP formulation that uses discrete defender move
probabilities (Section 4). (3) We additionally offer an experimen-

tal comparison that demonstrates that an NLP-based approach is
highly efficacious in our setting, and offer a systematic study of the
effect of network topology on the efficacy of defense (Section 5).
(4) We present a model of network design in which the defender
can first build edges along which patrol decisions are subsequently
made. We present a formal model, as well as algorithms for this set-
ting, and find that a MILP-based approach is much superior to NLP
(Section 6). (5) We present a model in which there are no hard con-
straints on defender moves; instead the defender faces transition
costs that depend on the source and destination pairs (Section 7).
We provide and evaluate NLP and MILP formulations for this set-
ting as well.

2. RELATED WORK

Some of the earliest work on adversarial patrolling settings was
done in the context of robotic patrols, but involved a very simple
defense decision space (for example, with a set of robots moving
around a perimeter, and a single parameter governing the probabil-
ity that they move forward or back) [1, 2].

More recent work by Basilico et al. [5, 6, 4, 7] studied general-
sum patrolling games in which the attacker is assumed to be in-
finitely patient, but the execution of an attack can take an arbitrary
number of time steps (in our setting, in contrast, an attack takes a
single step to execute). However, the resulting formulations rely
in a fundamental way on the assumption that both players are in-
finitely patient, and cannot be easily generalized to handle an im-
patient attacker. Moreover, Basilico et al. only consider a restricted
attacker strategy space, and, additionally, their formulation may in-
volve extraneous constraints which result in suboptimal solutions.
Indeed, our experiments demonstrate that in the special case of our
setting when rewards are undiscounted, our approach yields sub-
stantially higher defender utility (see Section 5.1). Finally, we con-
sider, in addition to the baseline patrolling problem, two extensions,
one involving network design, and another in which patrol moves
incur costs. To our knowledge, neither of these extensions has pre-
viously been considered in the context of adversarial patrolling.

3. ADVERSARIAL PATROLLING

Formally, an adversarial patrolling game (APG) can be described
by the tuple {7, Ug(3), Ug (i), Ug (¢), U (i), 8, G}, where T is the
set of m targets patrolled by the defender, Ug (i) and Uj (4) are the
utilities to the defender if an attacker chooses a target © € T when
it is patrolled and not, respectively, while U (¢) and Uy’ () are the
corresponding attacker utilities, 6 € (0, 1) is the discount factor,
and G = (T, E) is a graph with targets as vertices and E the set
of directed edges constraining defender patrolling moves between
targets. It is useful to consider the representation of this graph as
an adjacency matrix A, where A;; = 1 if and only if there is an
edge from target ¢ to target j. Below we consider a zero-sum game
setting, where Ug (i) = —Ug (¢) and UJ (i) = U (9).

The game proceeds in a (possibly infinite) sequence of steps
in which the defender moves between targets (subject to the con-
straints imposed by (), while the attacker chooses the time and
target of attack. The defender’s (stochastic) patrolling policy is a
schedule 7 which can in general be an arbitrary function from all
observed history (i.e., the sequence of targets patrolled in the past)
to a probability distribution over the targets patrolled in the next
iteration. The attacker is presumed to know the defender’s policy
7 at the time of decision. At each time step ¢ the attacker observes
the defender’s current location ¢ and may choose to wait or to at-
tack an arbitrary target 5 € 7. If an attacker waits, he receives
no immediate utility, while attacking a target j gains the attacker

Uy (4) if it is covered by the defender at time ¢ + 1 and Uy’ (3) if it
is not. We denote the attacker’s policy by a. We say that a policy
(7 or a) is Markovian if it only depends on the current location of
the defender, and we call it stationary Markovian if it additionally
has no dependence on time.

We use v; to denote the expected discounted value to the attacker
upon observing the defender at target :. Where relevant, we as-
sume that the defender always starts at target 0, and the aim of the
defender is, consequently, to minimize vo, which the attacker at-
tempts to maximize.

EXAMPLE 1. USCG’s Patrolling Problem as an APG: USCG
safeguards important infrastructure at US coasts, ports, and in-
land waterway. Given a particular port and a variety of critical
infrastructure that an adversary may choose to attack, USCG con-
ducts patrols to detect an adversary and protect this infrastructure.
However, while the adversary has the opportunity to observe pa-
trol patterns, limited security resources imply that USCG patrols
cannot be at every location at all times [3]. In the APG frame-
work, USCG is the defender, while a terrorist group (for example)
is an attacker who can conduct surveillance and can both observe
the current location of patrols and obtain a good estimate of the
stochastic patrolling policy deployed.

3.1 APG as a Stochastic Game

The adversarial patrolling game can be formulated as a stochas-
tic game [9]. A stochastic game is defined by a set of states, a set of
players, each taking actions from a finite collection, transition prob-
abilities between states which depend on joint player actions, and,
finally, utility (reward) functions of players determined by current
state and actions jointly selected by the players.

In our setting, states correspond to the set of targets 7', as well as
an absorbing state s. Defender actions in each state are the targets
J that he can move to in a single time step, while attacker actions
are to wait or to attack (for the moment, we will assume that we can
compute expected utilities when attacker chooses to attack; we deal
with the issue of which targets are attacked below). The state transi-
tions are actually deterministic, conditional on player actions: if the
attacker chooses to attack, the system always transitions to the ab-
sorbing state s; otherwise, the next target is completely determined
by the defender’s action. Finally, if the attacker waits, our baseline
model involves zero reward accruing to both players. Letting R;
denote the expected utility to attacker of attacking in state ¢; the de-
fender’s utility in the zero-sum model is then — ;. The stochastic
game has an infinite horizon, and in our model the attacker’s dis-
count factor is . Figure 1 offers a schematic illustration of APG
as a stochastic game. Since it’s a zero-sum game, the defender will
aim to minimizes the expected attacker utility (starting from state
0, as we had assumed).

Since the game has an infinite horizon, the policy of the defender
can in general be impossible to represent in finite space. Fortu-
nately, in two-player discounted stochastic games there exists an
equilibrium in stationary Markovian policies [9]. Below we there-
fore focus exclusively on stationary policies, and denote by 7;; the
(stationary) probability that the defender moves from target i to j.

4. OPTIMAL PATROLLING POLICIES ON
NETWORKS

4.1 Partial Formulation of the Defender’s Op-
timization Problem

Since APG is a special case of a stochastic game, we can adapt
the non-linear programming formulation for computing a Nash equi-

ri(m,wait) = 0

Py wait) = 7

y \ /
/ /

p(attack) = 1

ri{attack) = R;

: : r(*)=0

py(*)=1

Figure 1: Schematic illustration of APG as a stochastic game,
showing example targets-states i and j, as well the absorbing
state s. p;;(-) denotes the transition probability, as a function
of the probability 7;; that the defender moves from i to j and
whether or not the attacker chooses “wait” or “attack”. Note
that if the attacker attacks, the stochastic game transitions to
the absorbing state with probability 1, independent of 7;;.

librium in general zero-sum stochastic games by Filar and Vrieze [9]
to our setting.! One minor addition to their formulation that we find
useful below is to represent the constraints on the defender’s action
imposed by the graph G as a set of constraints

7T7;]'§A¢j Vi, jel. (D

Recalling that R; is the expected attacker utility from attacking in
state ¢, and v; are expected attacker values of starting in state 7, we
can formulate the defender’s problem as the following mathemati-
cal program, if we suppose that R; is known:

minZvi (2a)

s.t.:

mi; > 0 Vi,jeT (2b)
J

mij < Aij Vi, j €T (2d)

v, > R; VieT (2e)

VieT. (2f)

Vs 2 5Z7rijvj
J

Constraints 2b and 2c¢ simply constrain defender policy to be a valid
probability distribution. The key constraints 2e and 2f are easiest to
think about if we fix defender policy 7 and just consider the MDP
faced by the attacker. The right-hand-side of Constraint 2e corre-
sponds to expected utility of attacking (which is just the immediate
reward R;, since attack moves the MDP into an absorbing state
s and no further earnings follow), while right-hand-side of Con-
straint 2f is the expected value of waiting (immediate reward is 0
for a waiting action). The constraints then arise because the state v;
must be the expected utility of making the best action choice, and
minimizing the objective ensures that these values bind to some ac-
tion in every state.

Note that formulation 2 contains non-linear non-convex constraints,

and is therefore in general NP-Hard to solve. Typically, algorithms
for such problems compute locally optimal solutions, and have no
global optimality guarantees. Consequently, both the computation

'Vital to this adaption is the fact that in zero-sum settings which we
focus on below, the distinction between Stackelberg equilibrium
and a Nash equilibrium of the corresponding simultaneous-move
game is not important.

speed, and solution quality are empirical questions, which we ex-
plore in experiments below.

Formulation 2 is partial, since it leaves open the question of how
R; are computed. We address this question in two ways below.

4.2 Explicitly Representing Attacker Choices

The simplest approach to computing R; is to explicitly represent
the attacker choice of target in each state ¢, if he chooses to attack in
that state (recall that we identify targets with “states”). Let a;; =
1 if target j is attacked in state ¢ and a;; = 0 otherwise. Past
literature on security games has offered a standard approach for
computing the optimal attack value using a set of constraints [11]:

a5 € {0, 1} vieT (3a)
day=1 VieT (3b)

J
0< R —[(1 —mi)Us (§) + misUs ()] < (1 — aiz) 2V i, j €T
(3¢)

where Z is a very large number. Adding these constraints to the
partial formulation 2 gives us the first non-linear program for com-
puting optimal defense strategies in APGs, albeit with integer vari-
ables. We refer to this formulation simply as MINLP.

4.3 Implicit Attacker Choices

In the MINLP formulation above, the integer variables arise be-
cause we use them to identify the targets chosen by the attacker in
each state. Since we are actually interested in the defender’s opti-
mization problem, we do not need to know the specific decisions
the attacker would make, but only need to compute the attacker’s
expected value. To do so, let the attacker’s set of actions upon ob-
serving defender at target ¢ be the union of “wait” and the set of
targets j to attack. We can then replace the constraints 2e in the
partial formulation 2 with the following set of constraints:

vi > (1 —m;)Uq (j) + miUs () Vi, jeT.

This removes both the variable R;, and the need for introducing
integer variables that explicitly represent the choices of targets to
attack. While the resulting program is still non-convex, it now has
no integer variables, and, indeed, many fewer variables altogether.
We refer to this formulation as NLP. (Arguably, this is actually the
most natural way to formulate APGs as a stochastic game. How-
ever, as we will see in Section 7, the approach that explicitly repre-
sents attacker decisions becomes necessary when the problem has
non-zero-sum elements.)

An important observation about the NLP formulation is that it
only involves n non-linear constraints, far fewer than a NLP formu-
lation to compute equilibria in general zero-sum stochastic games.
As we demonstrate below, this NLP therefore scales extremely well
with the number of targets.

4.4 Mixed Integer Programming Formulation

Even the simplified formulation above is still non-linear non-
convex, and while there exist solvers for such problems, there are
few guarantees about global solution quality that can be provided:
in general, only a local optimum is found. Since we seek a glob-
ally optimal solution for the defender, we wish ideally to recast the
problem in a form which at least guarantees that globally optimal
solutions are approximately achieved.

In this section, we arrive at a MILP (mixed integer linear pro-
gramming) formulation for an approximate defender optimization
problem by discretizing the unit interval into which defense move
probabilities will fall into L intervals (L + 1 allowable probability

levels). Let variables p; € [0, 1] be the discrete levels in the unit
interval with po = 0 and p;, = 1, and define d;;; € {0,1} to be
binary variables such that d;;; = 1 indicates a particular discrete
probability choice p;. We must naturally have a constraint that only
one such choice can be made:

Z diji = 1.
l

Next, we replace 7;; with >, pidsj; throughout. While constraint 2f
remains bi-linear, one of the variables is now binary, and the con-

straint can therefore be linearized as follows. Define a new set

of variables w;j; and let w;;; = d;;v;. Enforcing the following

constraints on w;;; replaces the bi-linear constraint above with an

equivalent set of linear constraints:

v — Z(l — dijl) Swiﬂ < v + Z(l — dijl) (4a)
—Zdij <wij < Zdiji. (4b)

Let Rij = (1= 32, midij))Us' (§) + 22, pdijnUg (7). We can now
rewrite the entire leader optimization program as a MILP:

2 o
s.t.:
di;i € {0,1} Vi,jeT,le Ll (5b)

Vi,j €T (5¢)

> di=1
.
Zszdiﬂ =1
7

J
Zpldijl < Ayj
]
vi > Ryj
vi > 6 Z Zplwijl
PR
— Zdiji < wiji < Zdij

wiji > v — Z(1 = diji)
wiji vy + Z(1—dij)

vieT (5d)

Vi, jeT (5e)

Vi, jeT (50)
VieT (52)

Vi, jeT,leL (5h)
Vi, jeT,leL (51)
Vi, jeT,leL, (59

where £ = {0,..., L}. Constraints 5d-5g correspond directly to
the constraints 2c-2f in the NLP formulation, only with the discrete
probabilities replacing ;. Constraints 5h-5j linearize the bilin-
ear term. We note that there is an analogous MILP formulation in
which we explicitly represent the attacked targets, as described in
Section 4.2. We refer to the MILP above as MILP (reduced), as
compared to MILP (baseline) which refers to the latter program;
MILP without a modifier refers to the former.

S. EXPERIMENTS: PATROLLING ON EX-
OGENOUS GRAPHS

In our experimental studies below we use a somewhat simplified
model in which Ug (i) = 0 for all targets ¢ € T. We generate
the values of successful attacks Uy’ (%) i.i.d. from a uniform distri-
bution on a unit interval. Throughout, we use § = 0.95, except
where specified otherwise.” Finally, we use well-known generative
models for networks to generate random instances of graphs over

“We considered other discount factors as well, but this one strikes
the right balance: it creates interesting tradeoffs between attacking
and waiting, and yet creates a setting that is significantly differ-
ent from past work which only considers § = 1. For details, see
http://aamas.webs.com/appendix_apg.pdf.

~+—Basilico etal. *#-Our formulation

o
©
-
\

o .
g -
R e o
s
g /
< T L
T .eee"
g 1 ¥
- 0.7
]
g g
o
&7

o
«n
«

10 15 20
Number of Targets

Figure 2: Comparison between our NLP formulation and that
developed by Basilico et al. The graph is Erdos-Renyi with p =
0.1.

which the defender patrols. The first is an Erdos-Renyi model [12]
under which every directed link is made with a specified and fixed
probability p; we refer to this model by ER(p), or simply ER. The
second is Preferential Attachment [12], which adds nodes in a fixed
sequence, starting from an arbitrary seed graph with at least two
vertices. Each node ¢ is attached to m others stochastically (unless
i < m, in which case it is connected to all preceding nodes), with
probability of connecting to a node j proportional to the degree
of j, d;. In a generalized version of this model that we consider
below, connection probabilities are (d;)”, such that when v = 0
we recover (roughly) the Erdos-Renyi model, v = 1 recovers the
“standard” PA model, and large values of v correspond to highly
inhomogeneous degree distributions. Finally, we also consider sim-
ple Cycles.

When the networks are relatively sparse (like a Cycle), and the
number of targets large, the attacker can usually attack the most
valuable target at time 0, and not face the tradeoff between the
value of time and attack utility that we are trying to model. In our
experiments, we therefore connected the starting target O to every
other target, with network topology effective only on the rest of the
targets. Alternatively, we may think of target O as a base, and the
rest of the targets as initial deployments, which are unconstrained.
Since target O is a kind of nominal target, we additionally set its
utility to the attacker Uy’ (0) to be 0.

All computational experiments were performed on a 64 bit Linux
2.6.18-164.el5 computer with 96 GB of RAM and two quad-core
hyperthreaded Intel Xeon 2.93 GHz processors. We did not make
use of any parallel or multi-threading capabilities, restricting a solver
to a single thread, when relevant. Mixed integer linear programs
were solved using CPLEX version 12.2, mixed integer non-linear
programs were solved using KNITRO version 7.0.0, and we used
IPOPT version 3.9.3 to solve non-linear (non-integer) programs in
most cases (the one exception is identified below, where we also
used KNITRO).

The results we report are based on 100 samples from both the at-
tacker utility distribution and (when applicable) from the network
generation model. Throughout, we report 95% confidence inter-
vals, where relevant.

5.1 Comparison to Basilico et al.

Basilico et al. [5] presented a multiple math programming ap-
proach to adversarial patrolling for a setting very similar to ours.
By setting § = 1, and reformulating the algorithm in [5] in a zero-
sum setting and with a single-step attack, we can make a direct
comparison between our algorithm (using the NLP formulation)
and theirs. The results, shown in Figure 2, suggest that our ap-
proach yields significantly better solutions.

The difference becomes less important as the number of targets

=&=5 targets -@-10 targets 20 targets =@ 50 targets

0 10 20 30 40 50
Number of Discrete Probability Values

Figure 3: MILP objective value as a function of granularity of
discretization in ER(0.1).

increases: since in both approaches we only allow for one defender
resource (defender can protect at most a single target at a time), and
we assign relative values to targets uniformly randomly, on sparse
graphs the attacker becomes increasingly likely to get the target he
wants when the discount factor is 1, since the defender is eventually
at least two hops away from the most valuable target.

5.2 MILP Discretization

The size and, consequently, complexity of the MILP depends
greatly on the fineness of discretization of the probability interval.
While we can, perhaps, presume that a fine enough discretization
would get us close to an optimal solution, computationally we can-
not in all likelihood afford a very fine discretization. An important
question, therefore, is: how much is enough? We address this ques-
tion by considering a sequence of increasingly fine discretizations,
starting at L = 1 (po = 0 and p1 = 1) and going up to L = 50
(pi € {0,0.02,0.04,...,1}). To ensure that whatever we find is
not particular to a given setting, we also varying the number of tar-
gets between 5 and 50, as well as the network topology (Cycle,
Erdos-Renyi, and Preferential Attachment).

The results, shown in Figure 3 for ER(0.1) networks, are quite
reassuring: L = 10 seems to suffice across all the settings shown,
and these results are also consistent with those obtained for Cycle
and PA(2,1) networks. From this point on, results based on MILP
formulation use L = 10, unless otherwise specified.

5.3 Comparison of the Alternative Formula-
tions

We offered several alternative formulations of the defender’s op-
timization problem: MINLP (the mixed integer non-linear pro-
gramming approach in which we explicitly encode attacker tar-
get choices), NLP (non-linear program in which attacker target
choices are implicit), and two MILPs, the first that does encode
target choices, which we call “MILP (baseline)”, and the second
that does not, and which we refer to as “MILP(reduced)”.

We compare all these formulations in terms of objective value
(i.e. average vo over 100 random realizations of target values and
network topologies) and average running time. The results in Fig-
ure 4 suggest that there is not a significant difference in efficacy
of the programming approaches we propose. Running time, how-
ever, does in fact differentiate them. Experimentally we found that
MINLP running time diverges rapidly from that of MILP: even with
as few as 9 targets, KNITRO solver takes nearly 300 seconds, as
compared to under 2 seconds solving the corresponding MILP ap-
proximation using CPLEX.

Surprisingly, we found little difference in running time between
the two MILP formulations, but the difference between MILP and
NLP formulations is rather dramatic. Figure 5 shows that the NLP
formulation scales considerably better than MILP, solving instances

~=MINLP -@-MILP (baseline) MILP (reduced) =*NLP

4 5 6 7 8 9
Number of Targets

Figure 4: Comparison of average attacker utility achieved us-
ing MINLP, two versions of MILP, and NLP formulations, us-
ing the Cycle topology.

with as many as 1000 targets in under 200 seconds (MILP already
begins to reach its limit by n = 50). Interestingly, graph topol-
ogy seems to play some role in determining the difficulty of the
problem: Cycle graphs are solved much faster by NLP than Erdos-
Renyi analogs.

<@ MILP-cycle =*=NLP-cycle NLP-ER(0.1)

= 160
E
5 140
]
» 120
P
€ 100
5 ¥
ge
€60 |
]]
40
]
20
M .
QAT i ¢
0 200 400 600 800 1000

Number of Targets

Figure 5: Running time comparison between MILP and NLP
on Cycle and ER(0.1) graphs. We omit MINLP which does not
scale, and the two MILP formulations yield similar results, so
we only present MILP (baseline) here.

5.4 The Impact of Network Topology

A perpetually interesting question in network science literature
is how the characteristics of a particular process taking place on
a graph are affected by the specifics of graph topology [12]. In
this section we study graph topologies from two perspectives: first,
the density (the number of edges relative to number of nodes) of
the graph, and second, homogeneity of the degree distribution. The
(generalized) Preferential Attachment generative model of networks
offers a convenient means to study both of these aspects of net-
works [12], since the parameter m governs the network density,
while v governs the homogeneity of the degree distribution.

“y =00 Fy=1 “y=5

Expected Utility (Attacker)
o
©

2 4 6 8 10 12 14 16 18 20
Number of Connections (m)

Figure 6: Comparison of attacker utility under different net-
work topologies, with 20 targets. All graphs here use the gen-

eralized Preferential Attachment model.
Figure 6 shows the results. As we would expect, increasing the

density (m) of the network gives the defender higher utility (lower
to the attacker). Surprisingly, however, homogeneity of the degree
distribution appears to have little effect.

6. ADVERSARIAL PATROLLING GAMES:
NETWORK DESIGN

Our experiments showed that network density plays an important
role in determining the efficacy of patrolling. A natural question
is: what if the defender can build the network? For example, in
a border patrol setting, the defender may choose to build roads or
clear certain areas to enable direct moves between important check-
points. Such investments to improve patrolling efficacy will usually
be costly (particularly if one includes maintenance costs), but may
be well worth the investment if targets are important enough.

Formally, suppose that the defender will first decide which edges
to construct, with a directed edge from i to j costing c;;. (Observe
that we can allow for existing edges by setting the corresponding
costs ¢;; = 0, and can incorporate constraints by letting ¢;; = 00.)
Once the graph is constructed, the adversarial patrolling game com-
mences just as described above, and, thus, in making the decisions
about which edges to construct, the defender must account for the
impact of the resulting graph on patrolling efficacy. Fortunately, the
decision to build edges can be incorporated directly into the mathe-
matical programming formulations above, with A;; now becoming
variables, rather than specified problem parameters.’

6.1 Baseline Network Design Formulation

One way to solve the network design problem would be to search
exhuastively through all the networks: create a network, solve for
defender utility using the approach from Section 4, and iterate. In-
tuitively, what we do here is shortcircuit this approach by doing the
entire optimization in one shot.

Let A;; be binary variables with A;; = 1 if and only if the
defender builds an edge from ¢ to j which he can subsequently
use in patrolling decisions. The lone term involving A;; in all our
formulations above is linear in A;;, and we therefore need to make
no further modifications to the constraints. Since edges have a cost,
we must change the objective to reflect the resulting cost-benefit
tradeoffs. Therein lies a problem: our formulations above used
>, v: as an objective, while the defender’s concern is only about
vo. Consequently, if we simply add a total incurred cost to >, v;
in the objective, the cost term will not be given sufficient weight,
and the solution may be suboptimal: in fact, it is fundamentally the
tradeoff between value and cost of building edges that we are trying
to make here. The true objective of vg + cost, however, does not
work either, since it will fail to correctly compute the values v; of
all states ¢, which are necessary to correctly obtain vg: coefficients
on all v; must be strictly positive. We therefore offer the following
approximate objective function:

min (1 —a)vo + OéZ’Ui + Z cijAij,
i#0 ij
where @ > 0 is some small real number, and the last term com-
putes the total cost of building the graph. It can be shown that o
can be scaled low enough to ensure that the resulting objective is
arbitrarily close to optimal.*

3There is a subtle issue in the network design problem: the re-
sult that we rely on to allow us to consider only stationary Markov
policies for the defender assumes a zero-sum game, which this no
longer is. However, the setting is a zero-sum game once the edges
have been formed, and that is all that our theorem actually requires.

*For proof, see http://aamas.webs.com/appendix_apg.pdf.

The modifications above can be made directly to both the NLP
and MILP formulations of the adversarial patrolling problem. How-
ever, the modification introduces integer variables, which are espe-
cially problematic when with start with a non-linear program. Be-
low we offer an alternative network design formulation in which no
integer variables are present.

6.2 NLP Network Design Formulation

Above, we used the graph constraint from the basic APG for-
mulations unchanged, and merely introduced A;; as integer vari-
ables. Alternatively, we can modify the graph constraint to recover
an equivalent formulation of the network design problem that con-
tains no integer variables.

Consider the set of constraints

mij(1—Aiy)) =0 Vijel (6)

which are equivalent to those in Equation 1 (when A;; = 0, 7;; are
forced to be 0). While we have just replaced linear constraints with
those that are non-linear, the win comes from the fact that we can
now relax A;; to be real-valued.

THEOREM 6.1. Suppose that A;; > 0 is unrestricted and c;; >
0. Further, suppose that we replace the linear graph Constraint I in
the network design formulation with Constraint 6. Then an optimal
solution A;j is binary-valued.

We note that we can make an analogous modification to the
MILP network design formulation, but must subsequently linearize
the new set of graph constraints. Nevertheless, we can prove that
the resulting linearized version always results in binary-valued A,;;.°

6.3 Experiments: Network Design

In this section, we compare the MILP formulation for network
design, which we refer to as MILP (ND), and the non-linear pro-
gramming formulation in Section 6.2, which we refer to as NLP
(ND).

The results in Table 1 offer a compelling case for the MILP net-
work design formulation: attacker values achieved are not very dif-
ferent, but NLP-based approaches are clearly quite suboptimal in
terms of design costs, building far more edges than optimal.

I method [attacker value | design cost ||

MILP (ND) (CPLEX) || 0.82£0.014 | 0.45+0.0058
NLP (ND) (IPOPT) || 0.78£0.044 | 7.35+0.29
NLP (ND) (KNITRO) || 0.77£0.021 | 3.14£0.084

Table 1: Comparison of attacker’s expected value and de-
fender’s network design cost for the NLP (ND) formulation
solved by IPOPT and KNITRO, and the MILP (ND) formu-
lation. For all, the number of targets is 20 and per-edge cost is
0.02. For KNITRO, we used 4 restarts; we had not tried more,
as even with 4 a significant fraction of instances (between 5 and
10%) simply stall.

In the next set of experiments, we fixed the cost c;; for every
edge to be a fixed value ¢, which we vary between 0 and 0.1. Fig-
ure 7 shows the attacker expected utility and algorithm runtime for
varying costs per edge ¢ and number of targets. Interestingly, at
costs as low as 0.005, the expected utility is already nearly opti-
mal (that is, we do essentially as well as when ¢ = 0). For cost
between 0.005 and 0.01, we see the peak in computational burden:
edge costs are now non-negligible, but good solutions can still be
obtained if only the most important edges are built.

3See http://aamas.webs.com/appendix_apg.pdf for details.

~o=5 targets *®-10 targets 20 targets

0 0.02 0.04 0.06 0.08 0.1
Edge Cost

=5 targets -®-10 targets 20 targets

N
@
=]

._.
(=]
8
[
S

Edge Cost

Figure 7: Network design: objective value and runtime for different edge costs and numbers of targets. Results from solving the

MILP (ND) formulation (capped at 300 seconds).
7. TRANSITION COSTS

In many realistic settings, it may be unreasonable to expect the
graph over which patrolling takes place to be truly fixed. Instead,
we may posit that each directed edge (¢,7) has some associated
cost ¢;; for the patroller to traverse, and the defender must decide
at each point in time the most cost-effective way to patrol among
all targets, depending on which target he is patrolling at the mo-
ment. (Notice that this setting is again a departure from our zero-
sum assumption. In the sequel, we assume that stationary Marko-
vian strategies nevertheless still suffice.) As an example, consider
a border patrol setting: only a subset of targets is connected via
easily traversable paths (e.g., roads), and in principle moves be-
tween targets separated by unfavorable terrain are not impossible,
just substantially more costly. Depending on target value, patrol
may at times wish to avail themselves of the more costly alterna-
tive routes.

Without loss of generality, suppose that the network is com-
pletely connected and remove the network constraint (Equation 1)
from the optimization.® Since the game is no longer zero-sum, the
NLP formulations we have used cannot be easily extended to com-
pute a Stackelberg equilibrium in this setting, since we would need
to introduce integer variables that explicitly represent attacker deci-
sions. However, we can extend a modified version of this problem,
where the defender is concerned only in worst-case expected long-
run costs (just worst-case costs below), which would be incurred if
the attacker chose to wait indefinitely. This objective may be espe-
cially reasonable if the defender does not actually know at which
point during his patrol the attacker would arrive, or be ready to at-
tack. We tackle the problem involving worst-case costs first in Sec-
tion 7.1, and deal with the more complicated case that incorporates
attacker decision in calculating the costs in Section 7.2.

7.1 Maximizing Worst-Case Costs

Our NLP formulation can be modified as follows to solve this
problem. First, introduce variables C; to be the sum of expected
future costs starting at target ¢. Since we start the problem at target
0, we modify the objective function to be

min(l — a)vo + aZvi + Ch.
i#0

Just as in the case of network design, we can prove that o can
be made sufficiently small here to obtain an arbitrarily good ap-
proximation of an optimal solution. In order to compute Cop, we
introduce a set of equality constraints that express the recursive re-
lationship between expected cost starting at target ¢ and costs that
will accrue depending on where the defense policy will move the

SThis is without loss of generality because for any edge with A;; =
0 we can set the cost ¢;; = oo.

defender in the next time period:

C; = ijc,-j + 527”,-0]- Viel. (7
J J

We can make analogous modifications to the MILP formulations
above, and subsequently linearize the corresponding constraints.”

7.2 Maximizing Expected Realized Costs

As initially formulated, the problem we really wish to solve is
for the defender to maximize his expected costs that are actually
realized, accounting for attacker decisions. We noted that the NLP
formulations become difficult to extend to solve this problem. We
therefore extend an MILP formulation. It turns out to be especially
convenient to use the formulation which explicitly represents at-
tacker decisions about which target to attack in each state. This
we had captured above using a set of constraints 3. Recall that R;
denotes the value to the attacker of attacking upon observing the
defender at target 5. We can in fact generate a similar set of con-
straints to represent attacker decisions whether to attack or wait in
state ¢. Let b; be a binary variable which is 1 if and only if the
attacker waits in state 4.

VieT
vVieT.

OS’UZ‘ —Ri S bz‘Z
0<vi—6Y mjv; <(1-b)Z

J

(8a)
(8b)

Constraint 8a computes the value to the attacker of attacking, while
Constraint 8b computes the value of waiting, and since b; is binary,
only one of the right-hand-side inequalities will bind.

Once we have identified whether the attacker attacks or waits in
each state 7, we can compute total discounted cost C; starting at
each state ¢:

Ci=(1-1b) (Z 7TijCij> + b; (Z TijCij +5Z7rijcj>
J J J
= Zﬂijci]’ + 52 biﬂ'z‘joj-
j J

The next step is to replace the variables 7;; with their discrete coun-
terparts, obtaining

Ci = Zzpldiﬂcz’j + 5zzplbidijlcj~
i o1 Jj o1l

Finally, while we have a non-linear constraint b;d;;;C;, we can
linearize it in a similar fashion as above, since b; and d;;; are integer
variables. Letting h;j; = b;d;;;C;, we ensure that h;;; satisfies the

"For details, see http://aamas.webs.com/appendix_apg.pdf.

following set of constraints:
—Zb; < hiyji < Zb; Vi, j,l (9a)
— Zdiji < hiji < Zdiji Vi, 3,1 (9b)

Cj—Z(2—diji —b;) < hiji <Cj +Z(2—diji — b)) Vi, 5,1
(90)

There is just one more loose end: the set of constraints that com-
pute b; above contains the original, non-discretized variables 7,
and one of them has a non-linear term. Thus, we first let m;; =
>, pidi;i throughout, and then recall that we had already linearized
the term §Zj >, pidijiv; by introducing wi; = dijiv above,
imposing constraints in Equation 4 on w.?

7.3 Experiments: Transition Costs

In our experiments pertaining to the formulation that uses tran-
sition costs instead of a fixed graph, we generate the cost for each
edge (4,) i.i.d. from a uniform distribution on an interval [0, ¢],
where c is a parameter that we vary (we call it cost upper bound).
The single exception is that we set the cost of staying at a given
target to be 0, which seem natural in most realistic settings.

7.3.1 Worst-Case Costs

Our first finding is that the quality of solutions is not very dif-
ferent between the NLP and MILP formulations. Running time of
NLP, however, is several orders of magnitude faster. We therefore
use the NLP formulation to study the impact of cost upper bound ¢
on solution quality and runtime. The results of this study are some-
what reminiscent of the observations we made in the network de-
sign setting. Runtime peaks at the cost upper bound of 0.01, which
already results in substantial costs to the defender for moving be-
tween targets, though a nearly optimal solution relative to O cost is
still achievable, with the defender having to be rather clever about
which edges to traverse.

7.3.2 Realized Costs

Our final set of results concerns the model which trades off actual
defender transition costs between targets with the desire to limit
attacker’s utility. Figure 8 shows the attacker utility as well as total
defender expenditures for 5 targets.” As expected, attacker value
increases with defense costs, but rather gradually. Interestingly, the
total costs of defense start gradually falling after reaching a peak
around ¢ = 0.75, presumably as some of the costs become so high
so that the corresponding arcs are not worth taking no matter what
target the value is.

8. CONCLUSION

We presented a model of discounted adversarial patrolling on
exogenous networks, and demonstrated how to formalize it as a
highly structured stochastic game. We then adapted a known non-
linear programming formulation to our problem in two ways: the
first introduced integer variables to compute the optimal attack util-
ities, following an approach commonly taken in the literature on
Stackelberg games, while the second incorporated this decision di-
rectly into the NLP. Furthermore, we offered an alternative, albeit
approximate, MILP formulation for this problem. Subsequently,
we extended the baseline adversarial patrolling model to allow the
defender to construct the graph constraining patrolling moves, at

8The complete MILP formulation is provided in the appendix at
http://aamas.webs.com/appendix_apg.pdf.

"We used a time limit of 300 seconds for CPLEX to solve these
problems. Doubling the time limit does not appreciably change the
results.

~+~Expected (Dis)Utility ~<#-Expected Cost

—_ I
go7 o
o
o6 . I — L
;‘_;' T
505 +7T
Zoa
g
3 03
So2 i B .
0.1 /-/;/Y'\N
0
0 0.5 1 15 2
Cost Upper Bound

Figure 8: Attacker value vy and defender total expenditures, as
a function of cost upper bound c in the “transition costs” model.
Solved using the MILP with 6 discrete probability levels, for 5
targets. All results are based on at least 60 samples.

some per-edge cost, and offered NLP and MILP formulations to
solve this problem. Finally, we presented a model in which the de-
fender can move between an arbitrary pair of targets, but incurs a
cost for each move which depends on the source and destination,
and offered NLP and MILP formulations to solve several variants
of this problem.

Our experiments verify that solutions which we compute are sig-
nificantly better than those obtained using an alternative formu-
lation applied to a special case of undiscounted zero-sum APGs.
Overall, both NLP and MILP formulations compute solutions much
faster mixed-integer non-linear programs, while NLP is much faster
than MILP, where applicable. On the other hand, we found that
MILP computes much better solutions than NLP in the network de-
sign problem. Additionally, the “transition costs” model in which
the defender is concerned with realized (rather than worst-case)
costs does not lend itself to an easy NLP adaptation. Instead, we ex-
tended the MILP formulation which explicitly represents attacker
target choices to compute approximate solutions in this case.

9. REFERENCES

[1] Noa Agmon, Sarit Krause, and Gal A. Kaminka. Multi-robot
perimeter patrol in adversarial settings. In /IEEE International
Conference on Robotics and Automation, pages 2339-2345, 2008.

[2] Noa Agmon, Daniel Urieli, and Peter Stone. Multiagent patrol
generalized to complex environmental conditions. In Tiventy-Fifth
National Conference on Artificial Intelligence, 2011.

[3] Bo An, James Pita, Eric Shieh, Milind Tambe, Christopher
Kiekintveld, and Janusz Marecki. Guards and protect: Next
generation applications of security games. In SIGECOM, volume 10,
pages 31-34, March 2011.

[4] Nicola Basilico and Nicola Gatti. Automated abstraction for
patrolling security games. In Twenty-Fifth National Conference on
Artificial Intelligence, pages 10961099, 2011.

Nicola Basilico, Nicola Gatti, and Francesco Amigoni.
Leader-follower strategies for robotic patrolling in environments with
arbitrary topologies. In Eighth International Conference on
Autonomous Agents and Multiagent Systems, pages 57-64, 2009.
Nicola Basilico, Davide Rossignoli, Nicola Gatti, and Francesco
Amigoni. A game-theoretic model applied to an active patrolling
camera. In International Conference on Emerging Security
Technologies, pages 130-135, 2010.

Branislav Bosansky, Viliam Lisy, Michal Jakov, and Michal
Pechoucek. Computing time-dependent policies for patrolling games
with mobile targets. In Tenth International Conference on
Autonomous Agents and Multiagent Systems, pages 989-996, 2011.
Vincent Conitzer and Tuomas Sandholm. Computing the optimal
strategy to commit to. In Proceedings of the 7th ACM conference on
Electronic commerce, EC ’06, pages 82-90, New York, NY, USA,
2006. ACM.

Jerzy Filar and Koos Vrieze. Competitive Markov Decision
Processes. Springer-Verlag, 1997.

%
&

[6

=

[7

—

[8

=

=
]

[10] Manish Jain, Jason Tsai, James Pita, Christopher Kiekintveld,
Shyamsunder Rathi, Milind Tambe, and Fernando Ordéiiez. Software
assistants for randomized patrol planning for the lax airport police
and the federal air marshal service. Interfaces, 40:267-290, July
2010.

[11] Christopher Kiekintveld, Manish Jain, Jason Tsai, James Pita,
Fernando Ordéiiez, and Milind Tambe. Computing optimal
randomized resource allocations for massive security games. In
Seventh International Conference on Autonomous Agents and
Multiagent Systems, 2009.

[12] Mark Newman. Networks: An Introduction. Oxford University Press,
2010.

[13] Bernhard von Stengel and Shmuel Zamir. Leadership with
commitment to mixed strategies. Technical Report
LSE-CDAM-2004-01, CDAM Research Report, 2004.

APPENDIX
A. PROOFS
A.1 Proof of Theorem 6.1

Suppose 7;; > 0. The only way for the constraint to equal zero in this
case is to force A;; = 1. Alternatively, suppose that 7m;; = 0. Then
the value of Aij is unrestricted. However, since Aij > 0, any positive
value of A;; would carry a cost, and have no benefit to the objective value,
since 7;; = 0 and this link is effectively unused. Therefore in an optimal
solution, A;; = 0.

B. FINITE HORIZON PROBLEMS

Abstractly, suppose we wish to maximize discounted rewards over a fi-
nite time horizon 7, with § as the discount factor, but have a solution that
maximizes the discounted rewards over an infinite time horizon. The fol-
lowing proposition bounds the quality of the solution to an infinite-horizon
problem in terms of the finite-horizon objective.

PROPOSITION B.1. Suppose that single-period utility is at most U. Let
* be an optimal policy for the infinite-horizon problem. Let v*(7) and
7*(T) be the optimal objective and policy for the problem in which the
horizon is T. Let v(T,) be the value of the finite-horizon objective when a
policy T is used.
U 6T+1

1-6°

Results of this kind are well known, but we nevertheless prove this propo-
sition for completeness.

PROOF. Define u(7) to be a (stochastic) reward realization in period ¢
under policy 7.

v(r, ") > 0% (1) —

rT
(T, 7*)=F Z 6tu(7r;f):|
Lt=0
[oo e}
=F Z5t ()| - FE Z Stu(n))
Lt=0 t=T+1
[oo oo
>E | surpm)| —E| > 8T
Lt=0 t=T+1
TsT+1
>0*(T) — .
> o' (T) = 5
U
As an example, suppose that our optimality tolerance is €. Letting
gsT+1
1—5 —°©

we can obtain a lower bound for the length of the horizon T given ¢ and e:

S log(e(1 — 6)) — log(U6)
- log 6 ’

T

So, if § = 0.5 and U = 1, time horizon only needs to be 8 periods for an
infinite-horizon solution to be within 0.01 of the finite horizon optimum.

C. APPROXIMATION QUALITY OF NET-
WORK DESIGN FORMULATION

First, let us abstract the constraint set of the above optimization problem
as some set C. Let

*) ; Ao
u(m™) n,filnecvo + Z i5Cij
i,j€T

be the true minimal (optimal) solution, while

a(@) = n,?ziAnec(l —a)vg + aj%%vj + MZE:T Ajjcij,

where 7* and 7 are the optimal policy and a policy that optimizes the ap-
proximate objective, respectively.

THEOREM C.1. Suppose that 0 < v; <V for all targets i € I. Then
u(®) < u(r*) 4+ 2aV.

PROOF. Define C' =37, ;o Aijcij.

u(it) = vo(#) = () + avo(#) —a > v;(#) + C
J#0
< (1—a)vo(r*) +a D vi(n*) + avo(#)
J#0

In our setting the attacker receives a reward only once, when he actually
attacks a target; consequently,

v; < maxmax{US(5), Uy (j)}
J

for all targets i € I. Thus, V = max; max{UZS(5), U¥(j)}. If we
further let max{U§(j), U¥(j)} < 1 for all targets j (this is true in all our
experiments below), V' = 1, and our approximation incurs an additive error
< 2a.

More generally, suppose that a reward a player receives in each time pe-
riod is bounded by U. Since v; is the expected sum of discounted rewards,

o0 _ o0 U
v, =E Stus| <UE ot = ——.
S| <os[So] =15

Thus,

R . U
u(®) < u(m)+amA

Consequently, in order to achieve an error tolerance €, we need
a< M
- U
D. ALTERNATIVE MILP NETWORK DE-
SIGN FORMULATION

In the MILP formulation the alternative set of graph constraints would
take the form

> pi(l—Aij)dijy =0 Vijel
!

The basic problem with this set of constraints is when we make A;; a prob-
lem variable, they become non-linear. However, since both variables in-
volved are binary, they are easy to linearize. Let z;;; = d;j; (1 — Ay;) and
replace these constraints with linear analogues:

Zplzijl:() Vi, jel. (10)
l

[num targets | original [alt,binary [alt,real |
5 0.82+0.092 | 0.61+0.073 0.68+0.068
10 12.1446.90 | 9.57+£5.10 24.85+11.66
20 28.73+7.36 | 54.63+13.37 | 300 (capped)

Table 2: Runtime comparison between three MILP network
design formulations: baseline (the original constraint), and two
alternative (a linearized non-linear constraint) formulations,
one forcing variables to be binary (alt, binary) and another al-
lowing them to be real valued (alt, real).

Finally, we can express the condition that z;;; = d;;;(1 — A;;) as a set of
linear constraints:

0 < zij1 < dij Vi, j,1 (11a)

diji — Asj < ziji <1 — Ay Vi, 3,1 (11b)

So far we seemed to only have succeeded in introducing more variables to

the problem. The punchline, however, is that we can now relax all variables
A;j to be real, rather than binary variables.

THEOREM D.1. Suppose that A;; > 0 is unrestricted in the alterna-
tive formulation above and c;; > 0. An optimal solution A;; is always
binary-valued.

PROOF. First we show that A;; € [0, 1]. Since z;;; > 0, constraint 11b
(right-hand-side) implies that A;; < 1. Since d;;; < 1, z;;; < 1, and
combined with constraint 11b (left-hand-side) it implies that A;; > 0.

Since z;5; > 0, constraint 10 implies that either p; = 0 or z;;; =
0. Since for any i, j we can only choose a single [with a positive d;j;
(constraint 5c), let [be such [with dz‘j[=1.

Case 1: suppose p; > 0 and, therefore, 20 = 0. Then dz‘ji —-Ai; <0,
or A;; > di]. 7 = 1. Thus, if I choose a positive probability of defending a
target j when at target ¢, A;; = 1.

Case 2: suppose that p; = 0, that is, probability of defending j starting
at ¢ is 0. This means that if (4, j) is ever built, it is not used. Since mw;; > 0
by our assumption, A;; > 0 would have no value, but incur a non-zero
cost. Thus, in an optimal solution Aij =0.

Note that we can do away with the assumption that c;; > 0 by simply
forcing all A;; = 1 when ¢;; = 0.10

While this alternative MILP formulation has fewer binary constraints,
Table 2 suggests that the additional effort was in vain: in fact, the original
MILP network design formulation scales considerably better. Surprisingly,
simply adding the binary designation to A;; variables actually speeds the
alternative formulation up when the number of targets is large!

E. MILP FORMULATION OF THE PROB-
LEM WITH TRANSITION COSTS

E.1 Worst-Case Costs

In the MILP formulation for the transition costs setting where the de-
fender is only concerned with worst-case costs, we can linearize the con-
straints in Equation 7, since probabilities are already discretized. First, let
us write the discrete analogues:

Ci =Y mdijicis +6Y Y mdiyC; Viel
il J o1
Next, let h;;; = d;;,C}, giving us the constraint

C; :ZZPldilezj +522plhiﬂ viel. (12)
P 7ol

Finally, we impose the following constraints on h;;;:
C;—Z(1 —diyj;) <hijy <Cj+Z(1—dgj) Yi,5,1 (13a)
—Zdij1 < hiji < Zdij Vi, j,l. (13b)

"Note that since our formulation actually linearizes the constraint
under the assumption that A;; is binary (otherwise linearization
need not work), a formal proof must proceed from the linearized
formulation, and we cannot rely on Theorem 6.1.

E.2 Realized Costs

Here we present the complete MILP formulation in the transition costs
setting when the defender attempts to minimize both the defender utility and
realized costs, accounting for the attacker’s decisions (wait or attack). Since
it’s not a zero-sum game, this formulation is now a substantial deviation
from the original NLP formulation for zero-sum games, and, indeed, there
is no clear extension of the original NLP to cover this setting.

Let R;j = [(1 — w35)UY(5) + mi5US(5)]. The full MILP formulation
is then

min (1 — a)vg + aZvi + Co (14a)
120

s.t.:

diji € {0,1} Vi,j €T, 1 €L (14b)

Vi,7 €T (14c)

> dij=1

]

DD mdii=1
71

Ci=_> mdiicij +5) > pihij (14e)
j 1 i 1

VieT (14d)

0<wv;—R; <b;Z VieT (14

0<wi =8 Y pwij < (1-b))Z VieT (14g
j o1

a;; € {0,1} VieT (14h)

VieT (14i)

Zaij =1
J

0<R;—Rij <(1—-ai)Z
— Zdi < wi < Zdggy
wijr > v; — Z(1 — diji)
wiji < v+ Z(1 —diji)

Vi,jeT (14j)
Vi,jeT,leL (14K
Vi,jeT,leL (14
Vi, jeT,leL, (14m)

— Zb; < hyj < Zb; Vi, 4,0 (14n)
— Zdij; < hij < Zdij Yi,4,1 (140)
hijl SC]’—FZ(Q—dijl —b;) Vi,7,0 (14p)
hijl >Cj — Z(2 - dijl —b;) Vi, 5,1 (14q)

This is a rather complicated formulation, so we now walk through the mean-
ing of all the constraints (the objective has the two familiar elements, min-
imizing both the attacker value starting at target O and total cost starting at
target 0. d;;; are the discrete probability variables. Thus, Constraint 14c
ensures that exactly one discrete probability level is chosen. Constraint 14d
ensures that probabilities sum to 1. Constraint 14e computes the defender
costs. The purpose of the variables h;;; to linearize the non-linear term
b;m;;C; in which b; is the binary variable storing the attacker’s wait/attack
decision. Constraints 14f and 14g compute the value of state 3, with b; en-
suring that only one of these constraint binds. Constraint 14i ensures that
exactly one target is attacked, and the utility R; of attacking in state ¢ is
computed in constraint 14j. The purpose of all the remaining constraints is
to compute the linearization variables w; ;; and h;j;.

F. EXPERIMENTS WITH DISCOUNT FAC-
TOR

Here we study the impact of changing the discount factor § on the at-
tacker’s expected utility and the runtime of the NLP model. Figure 9 shows
that once the discount factor is at 0.5 or lower, it does not pay for the at-
tacker to wait, and the utility is therefore insensitive to changing the dis-
count factor in this region (recall that positive utility is attained only upon
a successful attack in this setup, so attacking immediately implies that the
discount factor plays no role, except to discourage waiting). Considering
the upper range of discount factors, we can observe that when § > 0.75,
the attacker can often gain a non-negligible value from waiting, and, on the
other hand, the expected utility at 6 = 0.95 is still significantly below that
for § = 1, suggesting that qualitative differences exist between the two
regimes.

Inspecting the runtime plot (Figure 10) reveals no significant runtime
differences as long as the discount factor is below 0.95, but runtime rises
sharply when it is higher.

'

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Discount Factor (3)

Figure 9: Results for objective value of attacker in the baseline
model as we vary the discount factor § between 0.1 (very impa-
tient attacker) and 1 (no discounting). The NLP model (solved
with IPOPT) is used throughout, and the number of targets is
fixed at 10.

Expected Utility (Attacker)

0.04 /

0.02 —

-
I

0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Discount Factor (5)

Figure 10: Runtime of the baseline NLP model (solved with
IPOPT) as we vary the discount factor 6 between 0.1 (very im-
patient attacker) and 1 (no discounting). The number of targets
is fixed at 10.

