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Abstract—Efficient and accurate malware detection is in-
creasingly becoming a necessity for society to operate. Existing
malware detection systems have excellent performance in iden-
tifying known malware for which signatures are available, but
poor performance in anomaly detection for zero day exploits for
which signatures have not yet been made available or targeted
attacks against a specific entity. The primary goal of this paper
is to provide evidence for the potential of learning classifier
systems to improve the accuracy of malware detection. A
proof of concept is presented for adaptive rule-based malware
detection employing learning classifier systems, which combines
a rule-based expert system with evolutionary algorithm based
reinforcement learning, thus creating a self-training adaptive
malware detection system which dynamically evolves detection
rules. Experimental results are presented which demonstrate
the system’s ability to learn effective rules from repeated
presentations of a tagged training set and show the degree
of generalization achieved on an independent test set.
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I. INTRODUCTION

Malware is an ever-growing threat to computer systems,
and security researchers are in a virtual arms race with
malware authors. The number of different strains and types
of malicious software has been on the rise for years. A
recent report states that “in 2010, cyber-criminals created
and distributed a third of all existing viruses” [1]. The
average number of threats created per day has gone from
55,000 in 2009 to 63,000 in 2010 [1].

The classification of malware is a difficult problem.
Software that allows unauthorized control of a system is
obviously malicious, but software that displays ads (adware)
is not strictly harmful, unless it invades privacy and collects
personal information without user consent (spyware). Soft-
ware can be considered malicious depending on the intent
of its author, and this makes it difficult to classify a piece of
code as malicious or not. Research has automated malware
detection based on the intent of the user and the intent of
the malware author [2].

Malware detection is the primary step in preventing a
computer system from potential information loss and sys-

tem compromise. There are a variety of ways to detect
malicious software. A majority of anti-virus software use
signature-based techniques that utilize a pre-defined set of
signatures [3]. This is a reactive approach: until a signature
is created for an exploit, the exploit will elude detection by
traditional anti-virus software.

The goal of this research is to create a self-training adap-
tive malware detection system which dynamically evolves
detection rules. A learning classifier system (LCS) is a
rule-based, expert system with Evolutionary Algorithm (EA)
based Reinforcement Learning (RL) [4]. An EA is a popu-
lation based search technique which uses biological inspired
mechanisms (natural selection, mutation, recombination) to
evolve solutions to a problem [4]. The LCS uses RL to adjust
the fitness of each rule based on environmental reward. The
EA evolves the set of rules, replacing some of the weaker
rules with newly created rules.

A malware detection system’s primary purpose is to have
a high rate of detection while maintaining a low rate of
false positives. To test a malware detection system, known
pieces of malware are presented to it, as well as files that
are not malicious (goodware). The set of software used
for testing must already be tagged in order to assess how
well the system performs. The testing framework for this
malware detection learning classifier system uses known sets
of malicious and clean files as indicated by VirusTotal1.

The remaining sections are organized as follows: Sec-
tion II provides background on LCS and malware detection
techniques, Section III details the methodology of the de-
tection system, Section IV explains the experimental setup,
Section V presents preliminary results, Section VI discusses
future directions, and Section VII summarizes the research.

II. BACKGROUND

John Holland created the precursor to the LCS around
his Genetic Algorithm, which later became the LCS when it
included an RL component [4]–[6]. The basic framework of

1VirusTotal - http://www.virustotal.com
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an LCS consists of (1) a finite population of classifiers that
represents the current knowledge of the system, (2) a perfor-
mance component, which regulates interaction between the
environment and classifier population, (3) a reinforcement
component, which distributes the reward received from the
environment to the classifiers and is the learning mechanism,
and (4) a discovery component which employs an EA to
evolve better rules and improve existing ones [4]. RL serves
two purposes: (1) to promote individuals that obtain high
rewards and (2) to discover better rules [4].

LCSs can be applied to different problem domains in-
cluding optimization problems, classification problems, and
RL problems [7]. Optimization problems are solved by
searching a solution space for the best solution. In a classi-
fication problem, the LCS learns to which class each prob-
lem instance belongs. Feedback is immediate and problem
instances can be sampled independently. Contrary to classifi-
cation problems, feedback in RL problems provides an indi-
cation of the quality of an action and may not be immediate.
Classification problems can be redefined as single-step RL
problems where reward is immediate. Malware detection is a
boolean classification problem, where each problem instance
(a file) can be classified as one of two classes (malicious or
non-malicious). This classification problem can be learned
by an LCS when converted into a single-step RL problem.
The learning system is desired to have a high percentage of
correct classifications (accuracy) and able to classify unseen
problem instances (generality) [7].

Recent research has shown that existing anti-virus soft-
ware is poor at identifying polymorphic scripts [8]. By
using various polymorphic techniques, the authors were
able to create malicious scripts with identical functionality
to known malware that were undetectable by anti-virus
software. They were able to detect the malware variants by
analyzing the software’s dependency graph with a hybrid
genetic algorithm. Even simple polymorphism could fool
more than half of the software that detected the original
malware.

There have been approaches to malware detection that
use nonsignature based techniques. By extracting features
of portable executable (PE) files, malicious executables
can be detected by heuristic techniques [3]. Packed and
nonpacked files were processed separately by a decision tree
to determine if they were malicious or not. This technique
was shown to overcome a bias shown by structural features
for packed/nonpacked executables.

A comparative study analyzed evolutionary and nonevo-
lutionary rule learning algorithms to evaluate performance
differences [9]. Five types of LCS were compared with five
nonevolutionary rule learners. Their conclusions indicated
that the nonevolutionary rule learning algorithms outper-
formed the LCS types. The LCS types still had very high
detection rates, but at the expense of high processing time.
The authors acknowledged that they did not explore different

Figure 1. Malware LCS Diagram

configuration parameters for the rule learning algorithms, as
well as a plan to combine the datasets into a single large set
in order to create a more challenging environment. Limiting
the sets to a specific category of malware increases the
chances of similarity between files, providing for an easier
environment than a random collection of malware.

The research presented in this paper demonstrates promis-
ing results for a custom built malware detection system
employing LCS on a dataset representative of the real world.
The test and training sets were not limited to a specific
category of malware; they contained a collection of malware
seen in the real world. Another step this research took is
to make sure the files in the sets were actually considered
malicious or clean by submitting them to VirusTotal. Not
all samples from the malicious collection were known to be
malicious.

III. METHODOLOGY

The LCS environment is a collection of files, both mali-
cious and non-malicious. Malicious software samples were
obtained from Offensive Computing2. Non-malicious soft-
ware samples were obtained from a machine freshly installed
with Windows XP and a university campus computer learn-
ing center machine running Windows XP. Clean executables
included software created by Microsoft, Adobe, MathWorks,
other third parties, and open source software. The malware
detection system consists of a pre-processing component and
an LCS; an overview of the process is presented in Fig. 1.

2Offensive Computing - http://www.offensivecomputing.net/



A. Pre-processing

The pre-processing stage analyzes all of the sample files
and submits them to VirusTotal, which tests files against 43
anti-virus engines, for a determination if a file is consid-
ered malicious or not. The set of samples from Offensive
Computing does not contain just malware. If more than 25
percent of the anti-virus vendors VirusTotal uses to scan a
file report malicious, the file is considered malicious. This
eliminates the possibility of a single anti-virus software
misclassifying a file. Each file was checked to make sure
that VirusTotal is consistent with the dataset the file came
from; i.e., a sample from the malware set must be identified
as malicious and a sample from the goodware set as non-
malicious. If it is not consistent, the sample is considered un-
known. Furthermore, all samples (malicious or not) that are
not in VirusTotal’s database are also considered unknown.
All unknown samples are not used in the system, as they can
not be verified as being definitely malware or goodware.

The executable datasets consist of software that runs on
the Windows operating system. Windows executables are
written in the PE format. PE files contain a number of
sections, each of which has a header that describes its data
and resources. One important section is the import data
section which contains the Import Address Table (IAT). The
IAT is where every external function called by an executable
is stored. This table includes the name of the function and
the name of the dynamic link library (DLL) in which the
function is stored. This research assumes that malicious
files will be distinguishable from goodware based upon the
structure of the PE file including the table of imported
functions. While in the real world this assumption would
not always hold, for the purpose of this research, this is
an acceptable assumption for determining whether an LCS
can potentially be used for malware detection. The IAT from
each file is used to generate a feature list containing all of the
imported functions each executable references. The feature
extraction part of the system was implemented using an open
source tool called pefile3.

B. Learning Classifier System

The LCS used is based on the eXtended Classifier System
(XCS) [10]. XCS uses an accuracy based fitness, an EA that
acts on the action set, and a Q-Learning RL technique [4].
Previous strength-based LCSs used a strength value for both
fitness in reproduction selection and as a measure of reward
the rule receives, which is used for action selection. The
accuracy-based XCS introduced three new components to
maintain separate estimates used for reproduction and action
selection: reward prediction estimates the average reward a
rule receives when its condition is met, prediction error esti-
mates the deviation of the prediction, and fitness estimates a
scaled relative accuracy of the rule [11]. In XCS, rules with

3pefile - http://www.code.google.com/p/pefile/

Figure 2. Visualization of a subtree of a generated rule

consistent strengths will have accurate predictions, and rules
with varying strengths will have inaccurate predictions [12].
Each rule’s fitness is derived from the estimated accuracy
of reward predictions instead of from the reward predictions
themselves [7]. XCS is designed to evolve a representation
of the best solution for all possible problem instances and a
complete and accurate payoff map of all possible solutions
for all possible problem instances [7].

The EA operates at the level of individual rules, known
as a Michigan-style LCS. The entire population of rules
represents a solution. A Pittsburgh-style LCS represents
a population of variable length rule sets [13]. Each rule
set is a solution, and the EA operates on the level of
an entire rule set [4]. Each style of LCS is best applied
to a certain type of learning. Pittsburgh style LCSs are
usually applied in “offline” or batch learning scenarios,
where all training problems are presented simultaneously to
the learner which results in a rule set that does not change
over time [4], [7]. Michigan style LCSs are designed to
work “online”, incrementally learning each problem instance
individually and evolving the rule set over time with each
new observation. Offline learning is characteristic of data
mining problems, and this research uses a Michigan style
LCS to continuously evolve a malware classifier.

1) Population: After pre-processing all of the files in the
dataset, the LCS randomly initializes a population of rules
using the extracted features. A traditional LCS encodes the
condition as a bit-string, but in this system each condition
is represented as an s-expression. S-expressions can be
visualized as a tree structure where internal nodes are one
of the logic operators {AND,OR,NOT} and leaf nodes
(terminals) are a single feature (an example is shown in
Fig. 2). Since malware detection is a binary classification
problem, the action represents whether the file is classified
as malicious or not. If no rules match a given malicious file
during training, a covering operator creates a rule that has a
matching condition and inserts it into the population.

2) Action Selection: A single problem instance in this
system is a randomly chosen file that is presented to the
system. Each rule in the population is a parse tree, and is
compared to the extracted features from the file. If the parse



tree matches the feature, it is put into the LCS’s match set.
From the match set, an action is chosen.

There are various methods of choosing an action, and
XCS typically alternates between two methods in an ex-
plore/exploit scheme [4]. Explore randomly selects an action
from within the action set, while exploit deterministically
selects the action with the highest reward. Once an action
is chosen, the action set becomes the rules in the match set
that advocate the chosen action.

3) Rule Evaluation: The rules in the action set are
updated every iteration with reward from the environment. In
the classification problem of malware detection, environment
feedback is immediate and based on whether the action
selection was correct. In XCS, the RL technique is based
on the Q-learning algorithm [14]. Three parameters are
adjusted to determine the performance of a rule, in the order:
prediction error, prediction, fitness [7].

A feature is considered malicious or benign based on
whether the file it was extracted from was identified as
malicious or benign. It is important to realize that not all
features of a malicious file are themselves malicious; many
malicious files have benign actions and there is an overlap
between the sets of benign features and malicious features.
Reward is based on whether the chosen action matches the
classification of the file.

4) Mutation: Mutation introduces random variation to in-
dividuals by selecting a random mutation point. The subtree
rooted at that node is replaced with a randomly generated
tree. The height of the generated subtree is limited so the
entire tree does not exceed the maxheight parameter, in
order to keep processing time from growing indefinitely. The
terminal nodes were chosen using proportionate selection
from the vector of features extracted from the training set.
Features were chosen using roulette-wheel selection, with
a probability proportional to the number of times a feature
appeared in the training set.

5) Crossover: Crossover works similar to that in Genetic
Programming. A subtree starting at a random node is chosen
from each parent, and the subtrees are swapped to create
two new children. During recombination the second parent’s
random node selection was limited to those nodes which
would keep the two created children’s heights below the
maxheight parameter.

6) Evolutionary Algorithm: In XCS, the EA reproduces
rules in the action set, realizing implicit niching [11] as
opposed to panmictic reproduction, where rules are selected
from the entire population. XCS performs genetic reproduc-
tion if the average time since the last EA invocation of the
rules in the action set exceeds threshold θGA.

The mechanism used for parent and survivor selection
is tournament selection. Parent selection chooses a set of
classifiers at random, and the one with the highest fitness is
chosen to become a parent. In XCS an effective method for
determining parent tournament size is to make it proportional

to action set size [7]. Parameter τ represents the proportion
of the action set that is used in the tournament. Since the
EA acts on individuals in the action set, selective pressure is
based on the size of the action set. If selection pressure is too
weak, learning may not take place and if selection pressure
is too strong, crossover never has any effect since identical
individuals are crossed [7]. Survivor selection repeatedly
executes a tournament of a user specified size and deletes
the least fit until the population size has been reduced to
its specified size. An age requirement has to be met before
rules are considered for parent and survival selection; a rule
is not eligible for selection until the system has presented it
with θage files.

IV. EXPERIMENTAL SETUP

The goal of this system is to evolve rules using RL that
will identify malware. The pre-processing step first extracts
features from the files and this collection of features is
divided into training and testing sets. The LCS evolved rules
over the training set, then evaluated them over the testing
set. The list of system parameters is presented in Table I.

The feature that was extracted from the files was the
list of imports from the IAT. This limited feature was
able to produce promising results by itself, and shows
the usefulness of an LCS to enhance malware detection.
The number of imports varied per file, and there was a
noticeable difference between non-malicious and malicious
sets. Malicious files generally have a fewer number of
imports than non-malicious files. This is logical as the non-
malicious set contains general DLL files, which are shared
libraries offering a wide range of functionality, and malware
is typically written to specifically target one vulnerability.

Occasionally, a malicious file imports an identical set
of functions as a non-malicious file. Any detection system
would not be able to tell the difference between files with
identical features. These files were removed from the dataset
to increase the usefulness of the evolved rules. Files with
corrupt or missing IATs could not be analyzed in this system.
Some malicious executables may have purposefully modified
PE headers to make analysis harder. Extracting additional
features would improve the number of files that could be
used in the system; these features are discussed in the
future work section. After removing incompatible files, the
experiments were run with 6000 files using a stratified ten-
fold cross-validation test. Each fold contained 50% malware
and 50% goodware.

A rule’s classification accuracy on a file is one of the
following four categories:

1) True positive (TP): correctly classifies a malicious
executable as malicious.

2) False negative (FN): incorrectly classifies a malicious
executable as non-malicious.

3) True negative (TN): correctly classifies a non-
malicious executable as non-malicious.



Table I
CLASSIFIER SYSTEM PARAMETERS

Parameter Name Parameter Value
Initialization Uniform Random

Population Size (µ) 1000
Operators [’and’, ’or’, ’not’]

Operator Rate 0.75
Max Tree Height 10

Parent Tournament Proportion (τ ) 0.2
Survivor Tournament Size 10

Crossover Rate (χ) 1.0
Mutation Rate (µ) 0.04

EA Threshold (θEA) 25
Learning Rate (β) 0.2

Accuracy Determination (α) 0.1
Error Threshold (ε0) 10

Age Threshold (θage) 300

4) False positive (FP): incorrectly classifies a non-
malicious executable as malicious.

Three different metrics were tracked: (1) classification
accuracy, (2) detection rate, and (3) false alarm rate (FAR).
These are defined mathematically as:

classification accuracy =
TP + TN

TP + TN + FP + FN
(1)

detection rate =
TP

TP + FN
(2)

false alarm rate =
FP

FP + TN
(3)

The classification accuracy rates how the system performs in
general, while detection rate and false alarm rate show more
specific metrics on the trade-offs between malware coverage
and false positives.

V. RESULTS & DISCUSSION

Results were averaged over the ten-fold cross validation
experiment. Fig. 3 shows the results from the system’s
overall accuracy and the average accuracy of the individual
rules for both training and testing using the standard XCS
selection technique.

Three different parent and survivor selection techniques
were compared in order to determine how the selection
mechanism affects results. The three methods were strength
(classification accuracy), accuracy (traditional XCS rule fit-
ness), and prediction (the metric used for action selection).
Individual classification accuracy, averaged over all rules in
the population, is shown in Table II and system classification
accuracy in Table III.

Selection based on classification accuracy is a strength-
based technique. It improves the average individual at the
expense of the system. This appears to be due to evolution
selecting rules able to classify easy-to-distinguish files, and
not selecting rules able to classify difficult to detect malware.

Figure 3. System and Individual Accuracy Rates

Table II
SYSTEM RATES FOR SELECTION METHODS

Selection System Accuracy Detection Rate FAR
Strength 0.768 (0.018) 0.767 (0.035) 0.230 (0.021)

Prediction 0.841 (0.010) 0.824 (0.021) 0.146 (0.013)
Accuracy 0.880 (0.004) 0.870 (0.013) 0.112 (0.011)

Rules compete for the highest individual accuracy, instead
of working to improve system accuracy.

Using fitness for selection (traditional XCS) resulted in a
lower average rule accuracy but a higher system accuracy.
Each rule was consistent in the files it classified, and as the
system learned which rules consistently misclassify files, it
could still utilize those rules in making accurate predictions.

The third technique, rule prediction, combined the pre-
vious two approaches, accuracy and strength. The metric
used for action selection, multiplying rule prediction by rule
fitness, was also used for selection in the EA. This allowed
for a balance between consistent and accurate rules. This
technique performed in the middle of the three; the average
rule accuracy was closest to the overall accuracy of the
system.

Two-sample F-tests for equal variances and corresponding
two-tailed t-tests using α = 0.05 were run for all results.
The p values for all tests were small enough to reject the
null hypothesis, indicating that the tests are statistically
significant. There is a balance between individual and overall
system classification accuracy; using a strength-based se-
lection method improved individual accuracy and using an
accuracy-based method improved the system as a whole. The
purely accuracy-based method performed the best overall,
the hypothesized benefit of combining the advantages of the
accuracy technique with the increased competition of the
strength technique did not materialize.



Table III
AVERAGE INDIVIDUAL RATES FOR SELECTION METHODS

Selection Individual Accuracy Detection Rate FAR
Strength 0.945 (0.005) 0.961 (0.005) 0.020 (0.004)

Prediction 0.905 (0.013) 0.933 (0.013) 0.031 (0.005)
Accuracy 0.595 (0.032) 0.677 (0.036) 0.318 (0.025)

VI. FUTURE WORK

Future work for this research includes expanding the
feature set to include other aspects of PE files. Besides
the IAT, other features to investigate include the name and
size of all PE sections, the entropy of each section, and
other aspects that can be statically extracted. Additional
features would allow files with corrupt or missing IATs to
be analyzed.

Packed files were not given special consideration in this
study, although packed files have different structural fea-
tures than unpacked files. Future work will determine how
these features affect the detectability of malicious files. The
current system cannot tell the difference between files that
import the same list of functions, and this decreased the
total size of the dataset on which the system could run.
By expanding the set of features the LCS uses, files can
be better distinguished, and detection rules, as well as the
overall system, will evolve to become more accurate.

Benchmarking the system on larger, more diverse datasets
will provide additional validation of its potential for malware
detection. Tuning of the LCS, including the selection tech-
nique, may be expected to increase system performance.

VII. CONCLUSION

This paper presents a proof of concept for adaptive rule-
based malware detection employing an LCS. It combines
a rule-based expert system with EA based RL, creating
a self-training adaptive malware detection system which
dynamically evolves detection rules. The LCS was extended
from XCS to use s-expressions for the rule’s condition.
Promising initial results are shown; although their accuracy
has to be further improved to be competitive with the state-
of-the-art. Evidence for the feasibility of using an LCS
to evolve rules is provided. With more features, additional
aspects of PE files could be analyzed, which would enhance
detection rates and lower false alarm rates.

The dataset included malware samples from Offensive
Computing and non-malicious samples from Windows com-
puters. The set of known malicious and non-malicious files
were processed to confirm their maliciousness and features
were extracted to be used for rule conditions. Experimental
results demonstrate the system’s ability to evolve effective
rules based on a training set, and its ability to generalize to
previously unseen samples contained in a test set.
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